tailieunhanh - Đạo hàm-Giới hạn-Vi phân

Kiến thức và bài tập về Đạo hàm-Giới hạn-Vi phân. Đạo hàm và vi phân là các khái niệm cơ bản trong toán học giải tích. Một phần của nó được giới thiệu trong chương trình trung học phổ thông. Ý nghĩa hình học của khái niệm đạo hàm là ở chỗ nó biểu diễn tốc độ biến thiên của hàm số thông qua hệ số góc của tiếp tuyến với đồ thị biểu diễn hàm số. Về vật lý, đạo hàm biểu diễn vận tốc tức thời của một chất điểm chuyển động với vận tốc không cố định | Tran Sĩ Tung Tích phan Nhắc lại Giới hạn - Đạo hàm - Vi phân 1. Cắc giai hạn đặc biệt a sinx lim 1 x 0 x Hê quà x lim 1 x 0 sin x sinu x lim 1 u x 0 u x u x lim 1 u x 0 sinu x x r. 1 öx b lim I 1 I e x e R x è x0 1 Hệ qua lim 1 x x e. x 0 ln 1 x lim - 1 x 0 x 1 ệx -1 _ . lim ----- 1 x 0 x 2. Bang đạo hàm các hàm sô sô cấp cô ban và các hê qua c 0 c la hang số xa ax -1 ua aua-1u í 1 k- è x 0 x2 f 1 0 u è u 0 u2 c x s-k. 2Vx vr 2Vu ex ex eu u .eu ax au . u lnlxl 1 x ln u u u logalxl 1 lốgalub u sinx cosx sinu u .cosu z. X. 1 . 2 tgx 2 1 tg x cos x tgu 22 1 tg u .u cos u -1 2 cốtgx 2 1 cotgx sin x . . - u . 2 cốtgu . - 1 cốtgu .u sin u 3. Vi phàn Cho hàm sô y f x xác định trên khoảng a b và co đạo hàm tại x e a b . Cho sô gia Ax tại x sao cho x Ax e ạ b . Ta goi tích y .Ax hoác T x .Ax là vi phàn của hàm so y f x tai x ky hiêủ là dy hoặc df x . dy y .Ax hoàc df x f x .Ax Ap dung định nghĩa trên vào hàm so y x thì dx x Ax Ax Vì vày ta co dy y dx hoàc df x f x dx Trang 1 Tích phan Trần Sĩ Tung NGUYÊN HÀM VÀ TÍCH PHÀN g h ỉ Bai 1 NGÜYSNHAM Hg 1. Định nghĩa Hàm sô F x được gọi là nguyên hàm cua hàm sô f x trên khoảng a b nếu mọi x thuộc à b tà cô F x f x . Nếu thày cho khoàng à b là đoạn à b thì phài cô thêm F à f x và F b- f b 2. Định lý Nếu F x là một nguyên hàm củà hàm so f x trên khoàng à b thì à Vôi moi hàng so C F x C cung là mOt nguyên hàm cuà hàm so f x trên khoàng đo. b Ngược lài moi nguyên hàm cuà hàm so f x trên khoàng à b đêu co thể viết dượi dàng F x C vôi C là mOt hàng so. Ngưôi tà ky hiêu ho tất cà càc nguyên hàm cuà hàm so f x là òf x dx. Do đo viết ò f x dx F x C Bo đề Nếu F x 0 trên khoàng à b thì F x khong đoi trên khoàng đo. 3. Các tính chất của nguyên hàm ò f x dx f x ò af x dx aj f x dx a 0 f x g x dx ò f x dx ò g x dx òf t dt F t C Jf u x u x dx F u x C F u C u u x 4. Sự1 ton tai nguyên ham Đinh lý Moi hàm so f x liên tuc trên đoàn à b đêu co nguyên hàm trên đoàn đo. Trang 2 Tran Sĩ Tung Tích phan BANG CAC NGUYEN HAM .

TÀI LIỆU MỚI ĐĂNG
10    185    3    04-01-2025
6    129    1    04-01-2025