tailieunhanh - Tài liệu học tập về các phương pháp tích phân

" Tài liệu học tập về các phương pháp tích phân " giúp cho Giáo viên và học sinh ôn tập, luyện tập và vận dụng các kiến thức vào việc giải các bài tập toán học và đặc biệt khi giải những bài tập cần phải tính toán một cách nhanh nhất, thuận lợi nhất đồng thời đáp ứng cho kỳ thi tuyển sinh đại học và cao đẳng. | Phần thứ nhất CÁC Li THUYẾT cơ BẢN VỀ TÍCH PHÂN I - ú THUYẾT 1. Nguyên hàm . Định nghĩa nguyên hàm họ nguyên hàm tích phân không xác đinh Hàm số F x được gọi là nguyên hàm của hàm số x trên khoảng 7 b nếu với mọi X e a b ta có F x f x . Hàm số F x được gọi là nguyên hàm của hàm số x trên đoạn í 9 nếu với mọi -V e í 7 ta có F x x các đẳng thức F a f á F b f b được hiểu là F x -F a fí . . F x -F b lim --- 2---- 7 và lim -- ----- j b . X-Xì x-a x h x-b Nếu hàm số a có một nguyên hàm F x thì nó có vô số nguyên hàm và tất cả các nguyên hàm đó đều có dạng F x c trong đó c là hằng số tuỳ ý vì F x c x nên F x c gọi là họ nguyên hàm của .r . Người ta kí hiệu họ tất cả các nguyên hàm của hàm số x là ỹf x dx đọc là tích phân bất định của .vj hay họ các nguyên hàm của U . . Các tính chất cơ bản của nguyên hàm a ịkf x dx k f x dx k là hằng số k 0 b J x x dr Ịf x dx Js x íZr c J x í x a d d J x c x x Jx 5 e J a V F x C F t C g p . Ạ C. 2. Tích phân . Định nghĩa tích phân tích phân xác định Giả sử f x là hàm số liên tục trên một khoảng H a và b là hai số bất kì thuộc H F x là một nguyên hàm của Cv trên H. Hiệu số F b - F a được gọi b là tích phân từ a đến b cùãf x và được kí hiệu là Tích phân này còn a được gọi là tích phân xác định vì kết quả của nó là một hằng số. b Công thức NEWTON-LEIBNITZ F x I ba F b -F a a là một trong những công thức tính quan trọng dùng để tính tích phân khi ta đã tìm được nguyên hàm của hàm số f x nói cách khác việc tính tích phân nhờ công thức này là một phép toán nối dài của phép tìm nguyên hàm nhưng không phải với công thức này ta sẽ tính được mọi tích phân cho dù tích phân đó là rất đơn giản . . Các tính chất cơ bản của tích phân Giả sử các hàm .v g x liên tục trên khoảng H và a b c là ba số bất kì thuộc H. b b a ịkf x dx k ỹf x dx k là hằng số a a b b b b J f x g x í x Ịf x dx a a a a c Ịf x dx o a 6 a b d Ịf x dx -Ịf x dx b a b c b e J x íừ J x dr j x í x a a c b b b g Ịf x dx Ịf t dt Ịf u du F b -F a a a a b h f x 0 trên đoạn a b Ịf x

TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN