tailieunhanh - 333 BÀI TOÁN TÍCH PHÂN LUYỆN THI ĐẠI HỌC 2010

333 BÀI TOÁN TÍCH PHÂN LUYỆN THI ĐẠI HỌC 2010 mang tính chất tham khảo, giúp ích cho các bạn tự học, ôn thi, với phương pháp giải hay, thú vị, rèn luyện kỹ năng giải đề, nâng cao vốn kiến thức cho các bạn trong các kỳ thi sắp tới. Tác giả hy vọng tài liệu này sẽ giúp ích cho các bạn. | 333 BÀI TOÁN TÍCH PHÂN LUYỆN THI ĐẠI HỌC 1 Cho hàm số f x x2 . Tìm nguyên hàm của hàm số g x biết rằng nguyên hàm này triệt tiêu khi x k 7 2 Định m để hàm số F x mx3 3m 2 x2 -4x 3 là một nguyên hàm của hàm số f x 3x2 10x4. 3 Tìm họ nguyên hàm của hàm số f x . TÍNH 7 3 4 I Ị 3tg2xdx 7 4 7 4 5 I Ị 2cotg2x 5 dx 7 6 7 6 I 2 cos lx 01 cosx 7 2 7 I Ị sin2 0 7 3 8 I Ị 2cos2 x-3sin2 x dx 0 7 -_z7 X _ 2 sin x 9 I Ị 4 dx 7 sin 7 x 7 33 10 I 1 tgx-cotgx 2 dx 6 7 4 11 I Ị cos4 xdx 0 7 2 12 I Ị sin3xdx 0 7 1 T _ rVsin3x sinx 13 I 1 - - cotgxdx 7 sin x 3 7 2 14 I Ị sin4xdx 0 7 31 . 15 I L 2 X X dx 7 sin cos 4 2 2 7 4 16 I Ị cotg2x dx 7 6 7 2 _ 2_. 17 I Ị esin xsin2xdx 7 4 . 2 18 I Ị cos2 x Q c js X1 _ 1 1 34 I i 2 dx ự3 x2V4 x2 w 2 1 19 I J sin dx w s 111 x 4 w 4 J 20 I J TTT dx cos 6 x w 2 21 I J cos2x sin4 x cos4 x dx 0 K 2 22 I J cos3xdx 0 K 23 I J sin2xdx 01 cosx 24 I J xW1 - x2dx 0 25 I J xS 1 x2dx . x Í 26 I J dx 0a 2x 1 27 I dx 0ex 4 28 I J- 1 dx 11 - e x 29 I J e x dx 0ex 1 1 30 I J 0 e e x dx x 1 e 31 I J 1 Inx x ln2 x 1 dx 32 I J x dx 33 I J x 3 3x2 6x 8 dx 0 7 4 1 35 I J . dx 2 x316 x2 6 1 36 I J . dx 233 x3x2 9 5 2 o I---7 37 I J x2A 4 x2dx 1 38 I J x3 x2 4 3dx 0 4 a x2-4 39 I J -dx 433 x 3 2 x2 1 _ 40 I J x 1 dx 2 wx2 1 ln2 .---- 41 I J Vex 1dx J 1 42 I J dx 0qV3 2x K 43 I J sin5 xdx 0 K 3 1 44 I J - dx 0 cos x 45 I J e- dx e-x 1 ln3 1 46 I J dx 0 Vex 1 K 47 I J 1 dx K sin x cotgx 6 elnx 2 ln2 x . 48 I J-- ---dx 1 x 49 I 50 I 51 I 52 I 53 I 54 I 55 I 56 I 57 I 58 I 59 I 60 I 61 I 62 I 63 I e sin ln x I dx 1 x 1 ì x3 x4 - 1 5dx 0 1 0 2 1 ì I dx 1 xV1 x3 K ì ựtg2x cot g2x - 2dx K 6 1 - x2 3dx 0 ỊẽT ln3 px ì-- -----dx 0 0 -1 K ì 61 - cos3 x sin x. cos5 xdx 0 2 3 1 - L - dx J5 x x2 4 K 4 X Î X dx 01 cos2x ln5 2x f- dx J V K 64 I ì sin x. sin 2x. sin 3xdx 0 K 65 I ì cos 2x sin4 x cos4 x dx 0 K 2 _ 66 I ì vcosx - vsinx dx 0 67 I ì 8 4dx 21 x8 - 2x4 K r 2 4cosx-3sinx 1 68 I ì ------ -------- dx 0 4sinx 3cosx 5 9 _ 69 I ì