tailieunhanh - Chapter 6: Force and Motion II

Describe the frictional force between two objects. Differentiate between static and kinetic friction, study the properties of friction, and introduce the coefficients for static and kinetic friction. | Chapter 6 Force and Motion II In this chapter we will cover the following topics: Describe the frictional force between two objects. Differentiate between static and kinetic friction, study the properties of friction, and introduce the coefficients for static and kinetic friction. Study the drag force exerted by a fluid on an object moving through the fluid and calculate the terminal speed of the object. Revisit uniform circular motion and using the concept of centripetal force apply Newton’s second law to describe the motion. (6-1) (6-2) F FN mg (6-3) Drag force and terminal Speed When an object moves through a fluid (gas or liquid) it experiences an opposing force known as “drag”. Under certain conditions (the moving object must be blunt and must move fast so as the flow of the liquid is turbulent) the magnitude of the drag force is given by the expression: Here C is a constant , A is the effective cross sectional area of the moving object, ρ is the density of the surrounding fluid, | Chapter 6 Force and Motion II In this chapter we will cover the following topics: Describe the frictional force between two objects. Differentiate between static and kinetic friction, study the properties of friction, and introduce the coefficients for static and kinetic friction. Study the drag force exerted by a fluid on an object moving through the fluid and calculate the terminal speed of the object. Revisit uniform circular motion and using the concept of centripetal force apply Newton’s second law to describe the motion. (6-1) (6-2) F FN mg (6-3) Drag force and terminal Speed When an object moves through a fluid (gas or liquid) it experiences an opposing force known as “drag”. Under certain conditions (the moving object must be blunt and must move fast so as the flow of the liquid is turbulent) the magnitude of the drag force is given by the expression: Here C is a constant , A is the effective cross sectional area of the moving object, ρ is the density of the surrounding fluid, and v is the object’s speed. Consider an object (a cat of mass m in this case) start moving in air. Initially D = 0. As the cat accelerates D increases and at a certain speed vt D = mg At this point the net force and thus the acceleration become zero and the cat moves with constant speed vt known the the terminal speed (6-4) C Uniform Circular Motion, Centripetal force In chapter 4 we saw that an object that moves on a circular path of radius r with constant speed v has an acceleration a. The direction of the acceleration vector always points towards the center of rotation C (thus the name centripetal) Its magnitude is constant and is given by the equation: If we apply Newton’s law to analyze uniform circular motion we conclude that the net force in the direction that points towards C must have magnitude: This force is known as “centripetal force” The notion of centripetal force may be confusing sometimes. A common mistake is to “invent” this force out of thin air. Centripetal force .

TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
crossorigin="anonymous">
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.