tailieunhanh - An information-theoretic metric based method for selecting clustering attribute

Clustering problem appears in many different fields like Data Mining, Pattern Recognition, Bioinfor-matics, etc. The basic objective of clustering is to group objects into clusters so that objects in the same cluster are more similar to one another than they are to objects in other clusters. Recently, many researchers have contributed to categorical data clustering, where data objects are made up of non-numerical attributes. Especially, rough set theory based attribute selection clustering approaches for categorical data have attracted much attention. The key to these approaches is how to select only one attribute that is the best to cluster the objects at each time from many candidates of attributes. |

TỪ KHÓA LIÊN QUAN