tailieunhanh - Sáng kiến kinh nghiệm: Hình học toạ độ trong mặt phẳng oxy

Mục tiêu của sáng kiến kinh nghiệm này nhằm khai thác các tính chất hình học phẳng để định hướng tìm lời giải bài toán hình học toạ độ và xem việc chỉ ra bản chất hình học phẳng sẽ bổ trợ cho giải toán chứ không phải là chúng ta đi giải một bài hình học phẳng. Qua đó giúp học sinh nhận thức được rằng: “Mỗi bài toán hình học toạ độ trong mặt phẳng luôn chứa đựng một bài toán hình phẳng tương ứng”. | Sáng kiến kinh nghiệm Hình học toạ độ trong mặt phẳng oxy A. MỞ ĐẦU I. Lý do chän Ò tµi Trong chương trình hình học lớp 10 có một phần rất quan trọng của hình học phổ thông đó là phương pháp toạ độ trong mặt phẳng đây là phần tiếp nối của hình học phẳng ở cấp THCS nhưng được nhìn dưới quan điểm đại số và giải tích. Như vậy mỗi bài toán hình học toạ độ trong mặt phẳng đều mang bản chất của một bài toán hình học phẳng nào đó. Tuy nhiên khi giải các bài toán hình học toạ độ học sinh thường không chú trọng đến bản chất hình học của bài toán ấy một phần vì học sinh ngại hình học phẳng vì cứ nghĩ hình học phẳng là khó một phần vì giáo viên khi dạy cũng không chú trọng khai thác hướng dẫn cho học sinh. Do đó hiệu quả giải toán không cao mà sự phân loại dạng toán phương pháp giải toán cũng không rõ ràng. Vì vậy thực tế yêu cầu phải trang bị cho học sinh một hệ thống các phương pháp suy luận giải toán hình học toạ độ trong mặt phẳng. Với ý định đó trong sáng kiến kinh nghiệm này tôi muốn nêu ra một cách định hướng tìm lời giải bài toán hình học toạ độ trong mặt phẳng dựa trên bản chất hình học phẳng của bài toán đó. II. C së lý luËn cña Ò tµi Thực trạng đứng trước một bài toán hình học toạ độ trong mặt phẳng học sinh thường lúng túng và đặt ra câu hỏi Phải định hướng tìm lời giải bài toán từ đâu . Một số học sinh có thói quen không tốt là khi đọc đề chưa kỹ đã vội làm ngay có khi sự thử nghiệm đó sẽ dẫn tới kết quả tuy nhiên hiệu suất giải toán như thế là không cao. Với tình hình ấy để giúp học sinh định hướng tốt hơn trong quá trình giải toán hình học toạ độ trong mặt phẳng người giáo viên cần tạo cho học sinh thói quen xem xét bài toán dưới nhiều góc độ khai thác các yếu tố đặc trưng hình học của bài toán để tìm lời giải. Trong đó việc hình thành cho học sinh khả năng tư duy theo các phương pháp giải là một điều cần thiết. Việc trải nghiệm qua quá trình giải toán sẽ giúp học sinh hoàn thiện kỹ năng định hướng và giải toán. Cần nhấn mạnh một điều rằng đa số các học sinh

TỪ KHÓA LIÊN QUAN