tailieunhanh - Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Nam Định (Đề chung)

Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Nam Định (Đề chung) dành cho các bạn học sinh lớp 9 và quý thầy cô tham khảo giúp các bạn học sinh có thêm tài liệu chuẩn bị ôn tập cho kì thi tuyển sinh lớp 10 sắp tới được tốt hơn cũng như giúp quý thầy cô nâng cao kỹ năng biên soạn đề thi của mình. Mời các thầy cô và các bạn tham khảo. | Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Nam Định (Đề chung) SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH LỚP 10 TRƯỜNG THPT CHUYÊN NAM ĐỊNH Năm học: 2019 – 2020 Môn thi: Toán (chung) – Đề 1 ĐỀ CHÍNH THỨC Dành cho học sinh thi vào các lớp chuyên tự nhiên Thời gian làm bài: 120 phút (Đề thi gồm: 01 trang) Câu 1 (2,0 điểm). 2019 3 1) Tìm điều kiện xác định của biểu thức P . x 3 x 9 2) Tìm tất cả các giá trị của tham số m để đường thẳng y m 2 1 x 7 và đường thẳng y 3 x m 5 (với m 1 ) là hai đường thẳng song song. 3) Cho tam giác ABC vuông tại A có AB = 6cm, BC = 10cm. Tính độ dài đường cao kẻ từ A xuống cạnh BC. 4) Một hình trụ có diện tích hình tròn đáy là 9 cm2, độ dài đường sinh là 6cm. Tính thể tích hình trụ đó. a 1 a 1 a2 a a Câu 2 (1,5 điểm). Cho biểu thức P 4 a : với a 0, a 1 . a 1 a 1 a 1 1) Rút gọn biểu thức P. 2) Tìm các giá trị nguyên của a để P nhận giá trị là số nguyên. Câu 3 (2,5 điểm). 1) Cho phương trình x 2 2(m 2) x m 2 5 0 (với m là tham số). a) Giải phương trình với m 0 . b) Tìm tất cả các giá trị của tham số m để phương trình có hai nghiệm phân biệt x1 , x2 (giả sử x1 x2 ) thỏa mãn x1 x2 1 5 . 2) Giải phương trình x 4 2 4 x 2 2 x . Câu 4 (3,0 điểm). Cho hình bình hành ABCD (BD < AC). Đường tròn (O) đường kính AC cắt các tia AB, AD lần lượt tại H, I khác A. Trên dây HI lấy điểm K sao cho HCK ADO . Tiếp tuyến tại C của đường tròn (O) cắt BD tại E (D nằm giữa B, E). Chứng minh rằng: 1) CHK # DAO và HK . OB 2) K là trung điểm của đoạn HI. 3) EI .EH 4OB 2 AE 2 . Câu 5 (1,0 điểm). ( x y ) 2 4 3 y 5 x 2 ( x 1)( y 1) 1) Giải hệ phương trình 3 xy 5 y 6 x 11 5 x3 1 2) Cho x, y, z là các số thực dương thỏa mãn x y z 2019 xyz . Chứng minh rằng x 2 1 2019 x 2 1 y 2 1 2019 y 2