tailieunhanh - Giới hạn dưới, giới hạn trên của mảng các biến ngẫu nhiên và ứng dụng

Bài viết nghiên cứu và mở rộng các tính chất về giới hạn dưới và giới hạn trên từ trường hợp dãy sang trường hợp mảng. Cuối cùng, chúng tôi thu được một số ứng dụng của chúng trong việc thiết lập định lý ergodic cho nhiều phép biến đổi, trong chứng minh luật số lớn đối với mảng các phần tử ngẫu nhiên 2-hoán đổi được và trong chứng minh chiều “ limsup ” của hội tụ Mosco. | Giới hạn dưới, giới hạn trên của mảng các biến ngẫu nhiên và ứng dụng TAÏP CHÍ KHOA HOÏC ÑAÏI HOÏC SAØI GOØN Soá 22 (47) - Thaùng 11/2016 Giới hạn dưới, giới hạn trên của mảng các biến ngẫu nhiên và ứng dụng Lower limit and upper limit of array of random variables and their applications TS. Dương Xuân Giáp, Trường Đại học Vinh ThS. Ngô Hà Châu Loan ThS. Bùi Đình Thắng Trường Đại học Kinh tế Nghệ An Tôn Nữ Minh Ngọc, Sinh viên Trường Đại học Vinh Duong Xuan Giap, ., Vinh University Ngo Ha Chau Loan, . Bui Dinh Thang, . Nghe An College of Economics Ton Nu Minh Ngoc, Student of Vinh University Tóm tắt Trong bài báo này, chúng tôi đưa ra khái niệm giới hạn dưới và giới hạn trên của mảng các biến ngẫu nhiên cho hai trường hợp: max hoặc min các tọa độ tiến tới vô cùng. Từ đó, chúng tôi nghiên cứu và mở rộng các tính chất về giới hạn dưới và giới hạn trên từ trường hợp dãy sang trường hợp mảng. Cuối cùng, chúng tôi thu được một số ứng dụng của chúng trong việc thiết lập định lý ergodic cho nhiều phép biến đổi, trong chứng minh luật số lớn đối với mảng các phần tử ngẫu nhiên 2-hoán đổi được và trong chứng minh chiều “ limsup ” của hội tụ Mosco. Từ khóa: giới hạn dưới, giới hạn trên, biến ngẫu nhiên, bổ đề Fatou, định lý hội tụ bị chặn Lebesgue, định lý ergodic Birkhoff, luật số lớn. Abstract In this paper, we introduce the concepts of lower limit and upper limit of array of random variables for two cases: max of indicators tends to infinity, and min of indicators tends to infinity. Thereby, we study and extend some properties of lower limit and upper limit to the multidimensional array case. Finally, we obtain some of their applications in proving multidimensional Birkhoff’s ergodic theorem, in proving strong law of large numbers for array of - exchangeable random elements, and in proving “ limsup ” part of Mosco convergence. Keywords: lower limit, upper limit, random variable, Fatou’s lemma, .

TỪ KHÓA LIÊN QUAN