tailieunhanh - Định lượng độ rối và viễn tải lượng tử với trạng thái hai mode kết hợp su (1, 1) thêm một và bớt một photon lẻ
Bài báo này nghiên cứu tính chất đan rối và định lượng độ rối của trạng thái hai mode kết hợp SU(1, 1) thêm một và bớt một photon lẻ bằng sử dụng tiêu chuẩn đan rối Hillery-Zubairy và tiêu chuẩn Độ đồng quy. Kết quả khảo sát cho thấy trạng thái hai mode kết hợp SU(1, 1) thêm một và bớt một photon lẻ là một trạng thái đan rối mạnh. | Định lượng độ rối và viễn tải lượng tử với trạng thái hai mode kết hợp su (1, 1) thêm một và bớt một photon lẻ ĐỊNH LƯỢNG ĐỘ RỐI VÀ VIỄN TẢI LƯỢNG TỬ VỚI TRẠNG THÁI HAI MODE KẾT HỢP SU (1, 1) THÊM MỘT VÀ BỚT MỘT PHOTON LẺ NGUYỄN THỊ THU HẰNG1 TRƯƠNG MINH ĐỨC1,∗ , HỒ SỸ CHƯƠNG2,∗∗ 1 Trường Đại học Sư phạm, Đại học Huế 2 Trường Đại học Đồng Nai ∗ Email: tmduc2009@ ∗∗ Email: hosichuong@ Tóm tắt: Bài báo này nghiên cứu tính chất đan rối và định lượng độ rối của trạng thái hai mode kết hợp SU (1, 1) thêm một và bớt một photon lẻ bằng sử dụng tiêu chuẩn đan rối Hillery-Zubairy và tiêu chuẩn Độ đồng quy. Kết quả khảo sát cho thấy trạng thái hai mode kết hợp SU (1, 1) thêm một và bớt một photon lẻ là một trạng thái đan rối mạnh. Khi sử dụng trạng thái này để viễn tải lượng tử một trạng thái kết hợp, chúng tôi nhận thấy rằng quá trình viễn tải lượng tử thành công với độ trung thực Fav của quá trình viễn tải thỏa mãn điều kiện 0, 5 ≤ Fav ≤ 1 . Từ khóa: Trạng thái hai mode kết hợp, Tính chất đan rối, Viễn tải lượng tử 1. GIỚI THIỆU Ngày nay, thời đại công nghệ thông tin ở một bước phát triển cao đó là số hóa tất cả các dữ liệu thông tin, luân chuyển mạnh mẽ và kết nối tất cả chúng ta lại với nhau. Thế nên, vấn đề làm thế nào để truyền tín hiệu đi xa mà vẫn đảm bảo tính lọc lựa cao và giảm được thăng giáng đến mức thấp nhất là vấn đề cấp thiết cho các nhà vật lý lý thuyết cũng như thực nghiệm. Trạng thái hai mode kết hợp SU (1, 1) được định nghĩa như sau [1] ∞ (n + q)! 1/2 1+q X 2 |ϕiab = |ξ, qiab = (1 − |ξ| ) 2 ξ n |n + q, niab , (1) n!q! n=0 a† + ˆb) tác trong đó ξ = − tanh(θ/2) exp(−iϕ); (θ/2) = r với θ rất bé. Khi cho toán tử (ˆ dụng lên trạng thái hai mode kết hợp SU (1, 1) thì sẽ cho ra một trạng thái mới, đó là Tạp chí Khoa học, Trường Đại học Sư phạm, Đại học Huế ISSN 1859-1612, Số 03(51)/2019: tr. 73-81 Ngày nhận bài: 15/05/2019; Hoàn thành phản biện: 20/06/2019; Ngày .
đang nạp các trang xem trước