tailieunhanh - Hình học Euclid và phi Euclid

Euclide Hình học Euclide (Ơclit) là bộ môn hình học cổ điển được xây dựng dựa trên cơ sở công nhận, không chứng minh hệ tiên đề sau của Euclide: | Hình học Euclid và phi Euclid Hình học Euclid Euclide Hình học Euclide (Ơclit) là bộ môn hình học cổ điển được xây dựng dựa trên cơ sở công nhận, không chứng minh hệ tiên đề sau của Euclide: • Hai điểm bất kỳ không trùng nhau xác định một đường thẳng và chỉ duy nhất một đường thẳng đó. Đường thẳng qua hai điểm A, B3 điểm A, B, C xác định mặt phẳng • Ba điểm bất kỳ không thẳng hàng (hay không nằm trên một đường thẳng) xác định một và chỉ duy nhất một mặt phẳng. • Nếu có ít nhất hai điểm khác nhau của một đường thẳng mà cùng thuộc về một mặt phẳng thì mọi điểm của đường thẳng đó đều thuộc về mặt phẳng đó. Đường thẳng trên mặt phẳng2 mặt phẳng giao nhau • Nếu hai mặt phẳng có một điểm chung thì chúng ít nhất còn có một điểm chung nữa. • Từ một điểm bất kì nằm ngoài một đường thẳng, có thể kẻ được một và duy nhất chỉ một đường thẳng song song với đường thẳng đó. (Tiên đề song song) Phát biểu khác: o Nếu hai đường thẳng cắt một đường thẳng thứ ba tạo ra hai góc trong cùng phía có tổng nhỏ hơn hai góc vuông, thì hai đường đó khi kéo dài đủ xa phải cắt nhau về phía ấy. o Hoặc đơn giản: tổng các góc trong một tam giác bằng 180° Đường thẳng song songHai đường thẳng vuông góc • Từ một điểm bất kì nằm ngoài một đường thẳng, có thể kẻ được một và duy nhất chỉ một đường thẳng vuông góc với đường thẳng đó. Hình học phi Euclide Hình học phi Euclid là bộ môn hình học dựa trên cơ sở phủ nhận ít nhất một trong số những tiên đề Euclid. Hình học phi Euclid được bắt đầu bằng những công trình nghiên cứu của Lobachevsky (được Lobachevsky gọi là hình học trừu tượng) và phát triển bởi Bolyai, Gauss, Riemann. Hình học phi Euclid là cơ sở toán học cho lý thuyết tương đối của Albert Einstein, thông qua việc đề cập đến độ cong hình học của không gian nhiều chiều. Sơ thảo về các hình học phi Euclid Hình học Euclid Hình học Euclid dựa trên cơ sở công nhận, không cần chứng minh hệ thống các tiên đề sau:

TỪ KHÓA LIÊN QUAN