tailieunhanh - Chương 2: Vùng biến dạng

Quan sát mô hình cán với hai trục cán có tâm O1 vμ O2 quay ng−ợc chiều nhau với các tốc độ V1 vμ V2. Bán kính trục cán lμ R1 vμ R2, các điểm tiếp xúc giữa phôi cán với trục lμ A1B1B2A2, góc ở tâm chắn các cung A1B1 vμ B2A2 lμ α¿1 vμ α¿2. | Chương 2: Vùng biến dạng Gi¸o tr×nh: Lý thuyÕt c¸n Ch−¬ng 2 Vïng biÕn d¹ng C¸c th«ng sè h×nh häc Quan s¸t m« h×nh c¸n víi hai trôc c¸n cã t©m O1 vµ O2 quay ng−îc chiÒu nhau víi c¸c tèc ®é V1 vµ V2. B¸n kÝnh trôc c¸n lµ R1 vµ R2, c¸c ®iÓm tiÕp xóc gi÷a ph«i c¸n víi trôc lµ A1B1B2A2, gãc ë t©m ch¾n c¸c cung A1B1 vµ B2A2 lµ α1 vµ α2. E Víi c¸c ký hiÖu nh− trªn, ta cã c¸c V1 kh¸i niÖm vÒ th«ng sè h×nh häc cña O1 vïng biÕn d¹ng khi c¸n nh− sau: A1 α1 K R1 - A1B1B2A2: vïng biÕn d¹ng h×nh häc ∆h1 H B1 - A1B1nB2A2m: vïng biÕn d¹ng h thùc tÕ. m n ∆h2 α B2 - m, n: biÕn d¹ng ngoµi vïng biÕn A2 2 R2 d¹ng h×nh häc. O2 - α1, α2: c¸c gãc ¨n. V2 - A1B1, A2B2: c¸c cung tiÕp xóc. lx - lx: h×nh chiÕu cung tiÕp xóc lªn ∆b/2 ph−¬ng n»m ngang. - H, h: chiÒu cao vËt c¸n tr−íc vµ sau khi c¸n. B b - B, b: chiÒu réng vËt c¸n tr−íc vµ sau khi c¸n. ∆b/2 - L, l: chiÒu dµi vËt c¸n tr−íc vµ H×nh S¬ ®å c¸n gi÷a hai trôc. sau khi c¸n. Mèi quan hÖ gi÷a c¸c ®¹i l−îng h×nh häc H - h = ∆h: l−îng Ðp tuyÖt ®èi. H−h h ∆h = 1− = : l−îng Ðp tû ®èi. H H H b - B = ∆b: d·n réng tuyÖt ®èi. b−B b ∆b = −1 = : d·n réng tû ®èi. B B B Tõ h×nh , ta xÐt hai tam gi¸c A1B1E vµ KB1A1: A1B1 B E = 1 suy ra: A1B12 = = 2R1∆h1 KB1 B1A1 Do ®ã, A1B1 = 2 R1∆h1 () Theo h×nh ta cã A1B1 lµ d©y cung cña cung tiÕp xóc A1B1, v× gãc α1 rÊt bÐ nªn ta cã thÓ coi ®é dµi cña d©y cung b»ng ®é dµi cung. Song còng víi lý do α1 Tr−êng §¹i häc B¸ch khoa - §¹i häc §µ N½ng 16 Gi¸o tr×nh: Lý thuyÕt c¸n nhá (50 - 80) cho nªn khi chiÕu d©y cung A1B1 lªn ph−¬ng n»m ngang ta coi nh− kh«ng ®æi. V× vËy, = A1K Víi cosα1 ≈ 1, nªn ta cã: A1B1 ≈ A1K ≈ lx V× vËy, l x1 = 2 R1∆h1 : chiÒu dµi cung tiÕp xóc () Víi gi¶ thiÕt α1 bÐ, ta còng cã biÓu thøc: lx1 ≈ R1. α1 () NÕu nh− ta còng xÐt t−¬ng tù víi O2 ta cã thÓ suy ®−îc: l x 2 = 2R 2 ∆h 2 () NÕu nh− ®é dµi cung tiÕp xóc ë trªn trôc O1 vµ O2 b»ng nhau, lx1 = lx2: →

TỪ KHÓA LIÊN QUAN