tailieunhanh - Đề cương ôn tập học kì 1 môn Toán 12 năm 2018-2019 - Trường THPT Chu Văn An

Nhằm giúp các bạn học sinh đang chuẩn bị cho kì thi học kì sắp tới cùng củng cố và ôn luyện kiến thức, rèn kỹ năng làm bài thông qua việc giải Đề cương ôn tập học kì 1 môn Toán 12 năm 2018-2019 - Trường THPT Chu Văn An. Hi vọng đây là tài liệu hữu ích cho các bạn trong việc ôn tập. | Đề cương ôn tập học kì 1 môn Toán 12 năm 2018-2019 - Trường THPT Chu Văn An THPT CHU VĂN AN TỔ TOÁN ĐỀ CƯƠNG ÔN TẬP HỌC KÌ I – MÔN TOÁN LỚP 12 NĂM HỌC 2018-2019 CHỦ ĐỀ 1: Ứng dụng của đạo hàm – Khảo sát và vẽ đồ thị của hàm số x 1 Câu 1: Cho hàm số y . Khẳng định nào sau đây là đúng? x 2 A. Đồ thị hàm số có hai đường tiệm cận. B. Hàm số nghịch biến trên \ 2 . C. Hàm số có một cực trị. D. Giao điểm của đồ thị với trục tung là 1;0 . Câu 2: Hai đồ thị y x 4 x 2 3 và y 3 x 2 1 có bao nhiêu điểm chung? A. 1. B. 4. C. 2. D. 0. Câu 3: Hàm số nào sau đây đồng biến trong khoảng 0; ? x 2 A. y . B. y 2 x 4 3. C. y x 4 x 2 . D. y x 3 x 2 . x 1 x 3 Câu 4: Viết phương trình các đường tiệm cận của đồ thị hàm số y ? 2 x 1 1 A. x 2 và y 1. B. x 1 và y 2. C. x 2 và y . D. x 1 và y . 2 2 Câu 5: Đường thẳng y = 1 là tiệm cận của đồ thị hàm số nào dưới đây? x 3 1 2 x 1 x2 3 A. y . B. y . C. y . D. y . 2 x x 1 2 x x 1 Câu 6: Cho hàm số y 2 x 4 4 x 2 1 . Xác định tọa độ điểm cực đại của đồ thị hàm số? A. 1;1 . B. 1; 1 . C. 0;1 . D. 1; 1 . Câu 7: Đồ thị hàm số y x 4 2 x 2 3 cắt trục hoành tại bao nhiêu điểm? A. 2. B. 4. C. 1. D. 3. Câu 8: Tìm giá trị lớn nhất của hàm số y sin x 3 cos x ? A. 2 2. B. 1. C. 2. D. 1 3. 3 Câu 9: Cho hàm số y f ( x) x 3 x 1 có đồ thị như hình vẽ. Giá trị nhỏ nhất của hàm số trên đoạn [0;2] là bao nhiêu? A. 3. B. 1. C. 1. D. 2. Câu 10: Hàm số y 2 x 1 đồng biến trên khoảng nào? 1 1 A. . B. ; . C. ; . D. 0; . 2 2 Câu 11: Tìm giá trị cực đại của hàm số y x 3 3 x 2? A. 1. B. 1. C. 0. D. 4. Trang 1/23 - Mã đề TOAN12 Câu 12: Cho hàm số y x 3 3x 2 9 x 2. Khẳng định nào sau đây là đúng? A. Hàm số không có cực trị. B. Điểm ( 1;3) là điểm cực đại của đồ thị hàm số. C. x 1 là điểm cực tiểu của hàm số. D. x 3 là .