tailieunhanh - Biochemical changes of mycorrhiza inoculated and uninoculated soils under differential Zn and P fertilization

Greenhouse experiment was conducted to assess the soil biochemical change patterns in soils of arbuscular mycorrhizal fungus (AMF)-inoculated and uninoculated maize plants fertilized with varying levels of P and Zn. Soil samples were collected for mycorrhizal spores, microbial communities, available micronutrients and phosphorus (P) contents besides organic and biomass carbon (BMC), soil enzymes and glomalin. Major portion of Fe and Zn fractionations was found to occur in the residual form. AM symbiosis significantly modulated the microbial communities in the soil regardless of low or high P concentration. The results showed that mycorrhizae had pronounced influence on increasing bacterial population, while less effect was found in the case of fungi and actinomycetes activity in the soil. The positive interaction between P and Zn in mycorrhizae treated soil resulted in enhanced growth especially root and nutrient uptake. Soil enzymes, viz. dehydrogenase and acid phosphatase activities in M+ soils, were significantly higher than M− soil consistently. Overall, the data suggest that mycorrhizal symbiosis enhanced the availability of P and Zn as a result of preferential nutrient uptake and biochemical changes that may alleviate micronutrient deficiencies in soil. | Biochemical changes of mycorrhiza inoculated and uninoculated soils under differential Zn and P fertilization