tailieunhanh - Hybrid beamforming for millimeter-wave heterogeneous networks

Heterogeneous networks (HetNets) employing massive multiple-input multiple-output (MIMO) and millimeter-wave (mmWave) technologies have emerged as a promising solution to enhance the network capacity and coverage of next-generation 5G cellular networks. However, the use of traditional fully-digital MIMO beamforming methods, which require one radio frequency (RF) chain per antenna element, is not practical for large-scale antenna arrays, due to the high cost and high power consumption. To reduce the number of RF chains, hybrid analog and digital beamforming has been proposed as an alternative structure. In this paper, therefore, we consider a HetNet formed with one macro-cell base station (MBS) and multiple small-cell base stations (SBSs) equipped with large-scale antenna arrays that employ hybrid analog and digital beamforming. The analog beamforming weight vectors of the MBS and the SBSs correspond to the the best-fixed multi-beams obtained by eigendecomposition schemes. | Hybrid beamforming for millimeter-wave heterogeneous networks