tailieunhanh - Tóm tắt Luận án tiến sĩ Toán học: Luật số lớn và sự hội tụ đầy đủ theo trung bình đối với mảng các phần tử ngẫu nhiên nhận giá trị trong không gian Banach
Mục đích của luận án nhằm đưa ra điều kiện để luật mạnh số lớn và luật yếu số lớn đối với mảng các phần tử ngẫu nhiên nhận giá trị trong không gian Banach tương đương với nhau. Bên cạnh đó, luận án đưa ra điều kiện để thu được sự hội tụ đầy đủ theo trung bình cấp p của mảng các phần tử ngẫu nhiên nhận giá trị trong không gian Rademacher dạng p (1 ≤ p ≤ 2). | Tóm tắt Luận án tiến sĩ Toán học: Luật số lớn và sự hội tụ đầy đủ theo trung bình đối với mảng các phần tử ngẫu nhiên nhận giá trị trong không gian Banach BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC VINH NGUYỄN THỊ THỦY LUẬT SỐ LỚN VÀ SỰ HỘI TỤ ĐẦY ĐỦ THEO TRUNG BÌNH ĐỐI VỚI MẢNG CÁC PHẦN TỬ NGẪU NHIÊN NHẬN GIÁ TRỊ TRONG KHÔNG GIAN BANACH Chuyên ngành: Lý thuyết xác suất và thống kê toán học Mã số: 9460106 TÓM TẮT LUẬN ÁN TIẾN SĨ TOÁN HỌC Nghệ An, năm 2018 Luận án được hoàn thành tại Trường Đại học Vinh Người hướng dẫn khoa học: 1. . Lê Văn Thành 2. GS. TSKH. Nguyễn Duy Tiến Phản biện 1: . Ngô Hoàng Long Trường Đại học Sư phạm Hà Nội Phản biện 2: TS. Lê Hồng Sơn Trường Đại học Sư phạm Kỹ thuật Vinh Phản biện 3: . Phan Đức Thành Hội Toán học Nghệ An Luận án được bảo vệ tại Hội đồng chấm luận án cấp Trường Tại Trường Đại học Vinh Vào hồi 8h00’ ngày 30 tháng 01 năm 2019 Có thể tìm hiểu luận án tại: - Thư viện Quốc gia Việt Nam - Trung tâm Thông tin – Thư viện Nguyễn Thúc Hào thuộc Trường Đại học Vinh 1 MỞ ĐẦU 1. Lý do chọn đề tài . Luật số lớn là một bài toán cổ điển của lý thuyết xác suất, nó khẳng định trung bình cộng của các biến ngẫu nhiên độc lập cùng phân phối hội tụ theo một nghĩa nào đó về kì vọng của các biến ngẫu nhiên đó. Trong nhiều năm gần đây, luật số lớn vẫn được nhiều nhà toán học tiếp tục quan tâm nghiên cứu. Luật số lớn có nhiều ứng dụng trong thống kê, toán kinh tế, khoa học tự nhiên và nhiều lĩnh vực khác. Chính vì vậy, việc nghiên cứu luật số lớn không chỉ có ý nghĩa lý thuyết mà còn có ý nghĩa thực tiễn. . Logic tự nhiên của sự phát triển các định lý giới hạn trong lý thuyết xác suất đã dẫn đến nhiều kết quả tổng quát hơn các kết quả cổ điển. Một trong những hướng tổng quát đó là từ những kết quả đã có đối với các biến ngẫu nhiên nhận giá trị thực mở rộng sang cho các phần tử nhận giá trị trong không gian Banach, hoặc từ các
đang nạp các trang xem trước