tailieunhanh - Đề thi Olympic môn Toán 11 năm 2018-2019 có đáp án - Cụm trường THPT Thanh Xuân - Cầu Giấy - Thường Tín

Đề thi Olympic môn Toán 11 năm 2018-2019 có đáp án - Cụm trường THPT Thanh Xuân - Cầu Giấy - Thường Tín dành cho các bạn học sinh đang chuẩn bị bước vào kì thi chọn học sinh giỏi. Ôn tập với đề thi giúp các em phát triển tư duy, năng khiếu môn học. Chúc các em đạt được điểm cao trong kì thi này nhé. | Đề thi Olympic môn Toán 11 năm 2018-2019 có đáp án - Cụm trường THPT Thanh Xuân - Cầu Giấy - Thường Tín SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI ĐỀ OLYMPIC MÔN TOÁN 11 CỤM TRƯỜNG THPT THANH XUÂN- NĂM HỌC 2018 – 2019 CẦU GIẤY-THƯỜNG TÍN Môn: Toán Thời gian: 120 phút (Không kể thời gian phát đề) Câu 1. Giải các phương trình sau: 1) 1 3 sin 2 x cos 2 x . 2) 9sin x 6cos x 3sin 2x cos 2x 8 . Câu 2. 1) Hoa có 11 bì thư và 7 tem thư khác nhau. Hoa cần gửi thư cho 4 người bạn, mỗi người 1 thư. Hỏi Hoa có bao nhiêu cách chọn ra 4 bì thư và 4 tem thư, sau đó dán mỗi tem thư lên mỗi bì thư để gửi đi? 2) Một bài thi trắc nghiệm khách quan gồm 5 câu hỏi, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án trả lời đúng, 3 phương án sai. Tính xác suất để một học sinh làm bài thi trả lời đúng được ít nhất 3 câu hỏi? Tìm hệ số của số hạng chứa x10 trong khai triển Niutơn của biểu thức 2 3x biết n là số n Câu 3. nguyên dương thỏa mãn hệ thức C21n 1 C22n 1 . C2nn 1 220 1 . 3 x 7 5 x2 Câu 4. 1) Tính giới hạn sau lim . x 1 x 1 2) Cho tam giác ABC có độ dài 3 cạnh lập thành một cấp số nhân. Chứng minh rằng tam giác đó có 2 góc trong mà số đo không vượt quá 60 0 . Câu 5. Cho tứ diện ABCD . 1) Gọi E , F , G lần lượt là trọng tâm các tam giác ABC , ACD, ABD . a) Chứng minh EFG / / BCD . b) Tính diện tích tam giác EFG theo diện tích của tam giác BCD . 2) M là điểm thuộc miền trong của tam giác BCD . Kẻ qua M đường thẳng d // AB . a) Xác định giao điểm B của đường thẳng d và mặt phẳng ACD . b) Kẻ qua M các đường thẳng lần lượt song song với AC và AD cắt các mặt phẳng MB MC MD ABD , ABC theo thứ tự tại C , D . Chứng minh rằng: 1. AB AC AD AB AC AD c) Tìm giá trị nhỏ nhất của biểu thức T . MB MC MD ----------------HẾT----------------- Thí sinh không được sử dụng tài liệu và máy tính cầm tay. Giám thị coi thi không giải thích gì thêm. .