tailieunhanh - Bài giảng Toán học tổ hợp và cấu trúc rời rạc: Chương 3 - Lê Văn Luyện

Bài giảng "Toán học tổ hợp và cấu trúc rời rạc - Chương 3: Một số kỹ thuật đếm khác" có cấu trúc gồm 2 phần cung cấp cho người học các kiến thức: Sử dụng sơ đồ Ven, nguyên lý bù trừ. nội dung chi tiết. | Bài giảng Toán học tổ hợp và cấu trúc rời rạc: Chương 3 - Lê Văn Luyện TOÁN HỌC TỔ HỢP VÀ CẤU TRÚC RỜI RẠC Chương 3 MỘT SỐ KỸ THUẬT ĐẾM KHÁC lvluyen@ ∼luyen/cautrucroirac FB: Đại học Khoa Học Tự Nhiên Tp. Hồ Chí Minh lvluyen@ Chương 3. Một số kỷ thuât đếm khác 09/2016 1/16 Nội dung Chương 2. MỘT SỐ KỸ THUẬT ĐẾM KHÁC 1. Sử dụng sơ đồ Ven 2. Nguyên lý bù trừ lvluyen@ Chương 3. Một số kỷ thuât đếm khác 09/2016 2/16 . Sử dụng sơ đồ Ven Nhận xét. Xét sơ đồ Ven Ta ký hiệu U là tập vũ trụ A là phần bù của A trong U N (A) là số phần tử của A. N = N (U) Khi đó N (A ∩ B) = N − N (A) − N (B) + N (A ∩ B) (1) lvluyen@ Chương 3. Một số kỷ thuât đếm khác 09/2016 3/16 Ví dụ. Một trường học có 100 sinh viên, trong đó có 50 sinh viên học tiếng Anh, 40 sinh viên học tiếng Pháp và 20 sinh viên học cả tiếng Anh và tiếng Pháp. Hỏi có bao nhiêu sinh viên không học tiếng Anh lẫn không học tiếng Pháp? Giải. Gọi là U là tập hợp sinh viên của trường. Gọi A là tập hợp sinh viên học tiếng Anh và P là tập hợp sinh viên học tiếng Pháp. Ta có N = N (U) = 100, N (A) = 50, N (P ) = 40 và N (A ∩ P ) = 20. Theo yêu cầu bài toán chúng ta cần tính N (A ∩ P ). Ta có N (A ∩ P ) = N − N (A) − N (P ) + N (A ∩ P ) = 100 − 50 − 40 + 20 = 30 Ví dụ. Có bao nhiêu hoán vị các chữ số 0, 1, 2, . . . , 9 sao cho chữ số đầu lớn hơn 1 và chữ số cuối nhỏ hơn 8? Giải. Gọi U là tập tất cả các hoán vị của 0, 1, 2, ., 9; A là tập tất cả các hoán vị với chữ số đầu là 0 hoặc 1 và B là tập tất cả các hoán vị với 9. Khi đó yêu cầu của bài toán là tính N (A ∩ B). chữ số cuối là 8 hoặc lvluyen@ Chương 3. Một số kỷ thuât đếm khác 09/2016 4/16 Ta có N = 10!, N .

TỪ KHÓA LIÊN QUAN