tailieunhanh - Nghiên cứu thuật toán học tăng cường sâu cho bài toán tìm kiếm cứu nạn trong môi trường mô phỏng 3-D Gazebo

Bài viết đề xuất một mô hình học tăng cường sâu (DRL) để xây dựng hệ thống Trí tuệ nhân tạo (AI) cho robot di chuyển trên mặt đất trong bài toán TK-CN. Trong mô hình học tăng cường sâu chúng tôi đề xuất sử dụng dữ liệu ảnh từ camera và tín hiệu từ các sensors gắn trên robot. | Nghiên cứu thuật toán học tăng cường sâu cho bài toán tìm kiếm cứu nạn trong môi trường mô phỏng 3-D Gazebo Nghiên cứu khoa học công nghệ NGHIÊN CỨU THUẬT TOÁN HỌC TĂNG CƯỜNG SÂU CHO BÀI TOÁN TÌM KIẾM CỨU NẠN TRONG MÔI TRƯỜNG MÔ PHỎNG 3-D GAZEBO Lê Phú Cường1,*, Nguyễn Thế Hùng2, Lê Đình Sơn3, Phạm Quang Chiến3, Lại Phú Minh3 Tóm tắt: Vấn đề tìm kiếm cứu nạn (TK-CN) là một yêu cầu rất cấp thiết ở trong và ngoài Quân đội. Trong những môi trường đặc thù, như trong trận chiến hay trong địa hình rừng núi phức tạp và nguy hiểm, đề giảm thiểu yếu tố nguy hiểm tới người cứu hộ, việc sử dụng các robot đang là một xu thế tất yếu trong các hoạt động TK-CN. Trong bài báo này, nhóm tác giả đề xuất một mô hình học tăng cường sâu (DRL) để xây dựng hệ thống Trí tuệ nhân tạo (AI) cho robot di chuyển trên mặt đất trong bài toán TK-CN. Trong mô hình học tăng cường sâu chúng tôi đề xuất sử dụng dữ liệu ảnh từ camera và tín hiệu từ các sensors gắn trên robot. Việc kết hợp giữa dữ liệu ảnh và tín hiệu sensor cho phép robot có khả năng di chuyển thông minh hơn so với một số hướng tiếp cận khác khi mà chỉ dùng dữ liệu ảnh hoặc tín hiệu sensor. Bên cạnh đó, chúng tôi cũng đưa ra một hàm giá trị trong mô hình được đề xuất giúp cho việc học của robot nhanh và đồng thời chính xác hơn. Môi trường thực nghiệm được xây dựng trên nền môi trường mô phỏng thế giới thực 3-D Gazebo mã nguồn mở. Các kết quả thu được chỉ ra rằng mô hình DRL được đề xuất trong bài báo là có tính khả thi khi robot vượt qua được những môi trường kiểm thử khác nhau. Từ khóa: Học tăng cường sâu (Deep reinforcement learning); Học sâu (Deep learning); Tìm kiếm và cứu nạn; Thiết bị tự hành. 1. MỞ ĐẦU Học tăng cường (Reinforcement Learning hay RL) [1] là một lĩnh vực đã được thế giới nghiên cứu và phát triển từ lâu. Lịch sử phát triển của RL ban đầu được đi theo hai hướng độc lập. Trong đó, hướng thứ nhất phát triển theo phương pháp học dựa trên quá trình thử-sai

TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN