tailieunhanh - Đề thi chọn học sinh giỏi thành phố môn Toán lớp 9 năm học 2016-2017 (Đề chính thức) – Phòng Giáo dục và Đào tạo Thành phố Thanh Hóa
Đề thi chọn học sinh giỏi thành phố môn Toán lớp 9 năm học 2016-2017 (Đề chính thức) biên soạn bởi Phòng Giáo dục và Đào tạo Thành phố Thanh Hóa. Để nắm chi tiết nội dung các bài tập đề thi. | Đề thi chọn học sinh giỏi thành phố môn Toán lớp 9 năm học 2016-2017 (Đề chính thức) – Phòng Giáo dục và Đào tạo Thành phố Thanh Hóa PHÒNG GD & ĐT THÀNH PHỐ ĐỀ THI HỌC SINH GIỎI CẤP THÀNH PHỐ THANH HÓA NĂM HỌC 2016 2017 Môn Toán: Lớp 9 ĐỀ CHÍNH THỨC (Thời gian làm bài: 150 phút) Bài 1: (5,0 điểm) x+2 x 1 x −1 Cho biểu thức: P = + + : . Với x 0, x 1. x x −1 x + x + 1 1− x 2 a) Rút gọn biểu thức P. 2 b) Tìm x để P = . 7 c) So sánh: P2 và 2P. Bài 2: (4,0 điểm) a) Tìm x, y Z thỏa mãn: 2 y 2 x + x + y + 1 = x 2 + 2 y 2 + xy b) Cho a, b, c là các số nguyên khác 0 thỏa mãn điều kiện: 2 1 1 1 1 1 1 + + = + + . a b c a 2 b2 c2 Chứng minh rằng: a 3 + b3 + c3 chia hết cho 3. Bài 3: (4,0 điểm) a) Giải phương trình sau: 4 x 2 + 20 x + 25 + x 2 + 6 x + 9 = 10 x − 20 b) Cho x, y là 2 số thực thoả mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức: A = x + y + 1. Bài 4: (6,0 điểm) Cho hình vuông ABCD có cạnh bằng a. N là điểm tùy ý thuộc cạnh AB. Gọi E là giao điểm của CN và DA. Vẽ tia Cx vuông góc với CE và cắt AB tại F. Lấy M là trung điểm của EF. a) Chứng minh: CM vuông góc với EF. b) Chứng minh: = a2 và B, D, M thẳng hàng. c) Tìm vị trí của N trên AB sao cho diện tích của tứ giác AEFC gấp 3 lần diện tích của hình vuông ABCD Bài 5: (1,0 điểm) Cho a, b, c > 0. Chứng minh rằng: a b c a b c + + < + + a+b b+c c+a b+c c+a a +b Hết Lưu ý: Học sinh không được sử dụng máy tính cầm tay. ĐÁP ÁN ĐỀ THI HỌC SINH GIỎI MÔN TOÁN LỚP 9 Bài Câu Nội dung Điểm 1 a Điều kiện: x 0, x 1. 0,5 x+2 x 1 x −1 P= + + : x x −1 x + x +1 1− x 2 0,5 x+2 x 1 x −1 = + − : ( x) 3 −1 x + x +1 x −1 2 x + 2 + x ( x − 1) − ( x + x + 1) x −1 = : ( )( x −1 x + x +1 ) 2 0,5 x − 2 x +1 2 = . ( )( x −1 x + x +1 ) x −1 0,5 2 = x + x +1 b Với x 0, x 1. Ta có: 2 0,5 P= 7 2 2 1,0 = x + x +1 7 x + x +1= .
đang nạp các trang xem trước