tailieunhanh - Tóm tắt Luận án Tiến sỹ Toán học: Các phương pháp hiệu chỉnh lặp newton kantorovich và điểm gần kề cho phương trình toán tử không chỉnh phi tuyến đơn điệu
Nội dung chính của luận văn là đưa ra và chứng minh sự hội tụ mạnh của một cải biên mới của phương pháp hiệu chỉnh lặp Newton-Kantorovich () của . Ryazantseva để giải bài toán () với A là ánh xạ đơn điệu từ không gian Banach E vào không gian đối ngẫu E ∗ , trong đó đã khắc phục được các hạn chế như đã nêu của phương pháp (). Mời các bạn tham khảo! | Tóm tắt Luận án Tiến sỹ Toán học: Các phương pháp hiệu chỉnh lặp newton kantorovich và điểm gần kề cho phương trình toán tử không chỉnh phi tuyến đơn điệu BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ *** NGUYỄN DƯƠNG NGUYỄN CÁC PHƯƠNG PHÁP HIỆU CHỈNH LẶP NEWTON-KANTOROVICH VÀ ĐIỂM GẦN KỀ CHO PHƯƠNG TRÌNH TOÁN TỬ KHÔNG CHỈNH PHI TUYẾN ĐƠN ĐIỆU Chuyên ngành: Toán ứng dụng Mã số: 9 46 01 12 TÓM TẮT LUẬN ÁN TIẾN SỸ TOÁN HỌC Hà Nội - 2018 Công trình được hoàn thành tại: Học viện Khoa học và Công nghệ - Viện Hàn lâm Khoa học và Công nghệ Việt Nam Người hướng dẫn khoa học 1: GS. TS. Nguyễn Bường Người hướng dẫn khoa học 2: PGS. TS. Đỗ Văn Lưu Phản biện 1: . . . . . . Phản biện 2: . . . . . . Phản biện 3: . . . . . . Luận án sẽ được bảo vệ trước Hội đồng chấm luận án tiến sĩ, họp tại Học viện Khoa học và Công nghệ - Viện Hàn lâm Khoa học và Công nghệ Việt Nam vào hồi giờ .’, ngày tháng năm 2018 Có thể tìm hiểu luận án tại: - Thư viện Học viện Khoa học và Công nghệ - Thư viện Quốc gia Việt Nam Mở đầu Nhiều vấn đề trong trong khoa học, công nghệ, kinh tế và sinh thái như quá trình xử lý ảnh, chụp cắt lớp vi tính, chụp cắt lớp địa chấn trong địa chất công trình, đo sâu bằng âm thanh trong xấp xỉ sóng, bài toán quy hoạch tuyến tính dẫn đến việc giải các bài toán dạng phương trình toán tử sau (A. Bakushinsky và A. Goncharsky, 1994; F. Natterer, 2001; F. Natterer và F. W¨ ubbeling, 2001): A(x) = f, () trong đó A là một toán tử (ánh xạ) từ không gian mêtric E vào không e và f ∈ E. gian mêtric E e Tuy nhiên, tồn tại một lớp bài toán trong số các bài toán này mà nghiệm của chúng không ổn định theo dữ kiện ban đầu, tức là một thay đổi nhỏ của các dữ kiện có thể dẫn đến sự sai khác rất lớn của nghiệm. Người ta nói những bài toán đó đặt không chỉnh. Vì vậy, yêu cầu đặt ra là phải có những phương
đang nạp các trang xem trước