tailieunhanh - Đề thi chọn HSG cấp tỉnh môn Toán 9 năm 2018-2019 có đáp án - Sở GD&ĐT Đắk Lắk
Nhằm chuẩn bị kiến thức cho kì thi học sinh giỏi sắp tới mời các bạn học sinh lớp 9 cùng tham khảo Đề thi chọn HSG cấp tỉnh môn Toán 9 năm 2018-2019 có đáp án - Sở GD&ĐT Đắk Lắk dưới đây để ôn tập cũng như rèn luyện kỹ năng giải bài tập Toán học. Chúc các bạn ôn tập kiểm tra đạt kết quả cao. | Đề thi chọn HSG cấp tỉnh môn Toán 9 năm 2018-2019 có đáp án - Sở GD&ĐT Đắk Lắk SỞ GIÁO DỤC & ĐÀO TẠO KỲ THI HỌC SINH GIỎI TỈNH ĐĂK LĂK NĂM HỌC 2018 – 2019 MÔN THI: TOÁN 9 – THCS ĐỀ CHÍNH THỨC Thời gian làm bài: 150 phút (không kể thời gian giao đề) Ngày thi: 10/4/2019 Bài 1: (4 điểm) 1) Rút gọn biểu thức A 3 2 3 33 12 5 3 37 30 3 . x x 6 x 12 x 8 y y 2) Giải hệ phương trình x 2 x 1 2 y Bài 2: (4 điểm) 1) Cho phương trình x 2 4 x 2 x 2 m 5 (với m là tham số). Tìm tất cả các giá trị của m để phương trình đã cho có bốn nghiệm phân biệt. 2) Trong mặt phẳng với hệ tọa độ Oxy, một đường thẳng d có hệ số góc k đi qua điểm M(0; 3) và cắt parabol P : y x 2 tại hai điểm A, B. Gọi C, D lần lượt là hình chiếu vuông góc của A, B lên trục Ox. Viết phương trình đường thẳng d, biết hình thang ABDC có diện tích bằng 20. Bài 3: (4 điểm) 1) Tìm tất cả các cặp số nguyên x; y thỏa mãn: 2 x 2 y 2 2 xy 6 x 4 y 20 2) Tìm tất cả các số tự nhiên có bốn chữ số, biết rằng số đó bằng lập phương của tổng các chữ số của nó. Bài 4: (4 điểm) Cho điểm A nằm ngoài đường tròn (O). Vẽ hai tiếp tuyến AB, AC (B, C là tiếp điểm) và một cát tuyến ADE của (O) sao cho ADE nằm giữa hai tia AO và AB; D, E (O). Đường thẳng qua D và song song với BE cắt BC, AB lần lượt tại P, Q. 1) Gọi H là giao điểm của BC với OA. Chứng minh OEDH là tứ giác nội tiếp. 2) Gọi K là điểm đối xứng của B qua E. Chứng minh ba điểm A, P, K thẳng hàng. Bài 5: (2 điểm) Cho hình vuông ABCD. Trên các cạnh CB, CD lần lượt lấy các điểm M, N (M không trùng với B và C; N không trùng với C và D) sao cho MAN 450 . Chứng minh rằng đường chéo BD chia tam giác AMN thành hai phần có diện tích bằng nhau. Bài 6: (2 điểm) Cho a, b, c là các số thực dương thỏa a b c 3 . Chứng minh rằng: a 1 b 1 c 1 3 b2 1 c2 1 a 2 1 -------------------- Hết -------------------- G Ngguuyyễễnn D GVV:: N Dưươơnngg Hả .
đang nạp các trang xem trước