tailieunhanh - Đề thi chọn HSG cấp tỉnh môn Toán 9 năm 2014-2015 - Sở GD&ĐT Vĩnh Phúc
| Đề thi chọn HSG cấp tỉnh môn Toán 9 năm 2014-2015 - Sở GD&ĐT Vĩnh Phúc SỞ GD&ĐT VĨNH PHÚC KỲ THI CHỌN HSG LỚP 9 —————— NĂM HỌC 2014-2015 ĐỀ CHÍNH THỨC ĐỀ THI MÔN: TOÁN Thời gian làm bài: 150 phút, không kể thời gian giao đề ———————————— 3 x 16 x 7 x 1 x 7 x Câu 1: (1,5 điểm) Cho biểu thức A : 2 x 2 x 3 x 3 x 1 x 1 a) Rút gọn biểu thức A b) Tìm x để A 6 mx 2 y 2 Câu 2: (1,5 điểm): Cho hệ phương trình (m là tham số) 2 x my 5 a) Giải hệ phương trình trên khi m = 10 b) Tìm m để hệ phương trình đã cho có nghiệm (x;y) thỏa mãn hệ thức 2015m 2 14m 8056 x y 2014 m2 4 Câu 3 (3 điểm): a) Cho 3 số thực dương a, b, c thỏa mãn a+b+c=1. Tìm giá trị lớn nhất của biểu a b c thức: P 3 3 3 9a 3b c 9b 3c a 9c 3a 2 b 2 2 b) Tìm tất cả các cặp số nguyên (x;y) thỏa mãn x(1 x x 2 ) 4 y ( y 1) Câu 4: (3 điểm): cho đoạn thẳng AC có độ dài bằng a. Trên đoạn AC lấy điểm B sao cho AC = 4AB. Tia Cx vuông góc với AC tại C, gọi D là một điểm bất kỳ thuộc tia Cx ( D không trùng với C). Từ điểm B kẻ đường thẳng vuông góc với AD cắt hai đường thẳng AD và CD lần lượt tại K, E. a) Tính giá trị theo a b) Xác định vị trí điểm D để tam giác BDE có diện tích nhỏ nhất c) Chứng minh rằng khi điểm D thay đổi trên tia Cx thì đường tròn đường kính DE luôn có một dây cung cố định. 1 1 1 1 1 Câu 5 (1 điểm): Cho dãy số gồm 2015 số: ; ; ;.; ; 1 2 3 2014 2015 Người ta biến đổi dãy nói trên bằng cách xóa đi hai số u, v bất kì trong dãy và viết thêm vào dãy một số giá trị bằng u + v + uv vào vị trí u hoặc v. Cứ làm như thế đối với dãy mới thu được và sau 2014 lần biến đổi, dãy cuối cùng chỉ còn lại một số. Chứng minh rằng giá trị của số cuối cùng đó không phụ thuộc vào việc chọn các số u, v để xóa trong mỗi lần thực hiện biến đổi dãy, hãy tìm số cuối cùng đó. —Hết— Cán bộ coi thi không .
đang nạp các trang xem trước