tailieunhanh - Đề thi chọn HSG cấp tỉnh môn Toán 12 năm 2018-2019 có đáp án - Sở GD&ĐT Long An (Vòng 2)
“Đề thi chọn HSG cấp tỉnh môn Toán 12 năm 2018-2019 có đáp án - Sở GD&ĐT Long An (Vòng 2)” là tài liệu tham khảo hữu ích dành cho giáo viên trong quá trình giảng dạy và phân loại học sinh. Đồng thời giúp các em học sinh củng cố, rèn luyện, nâng cao kiến thức môn Toán lớp 12. Để nắm chi tiết nội dung các bài tập đề thi. | Đề thi chọn HSG cấp tỉnh môn Toán 12 năm 2018-2019 có đáp án - Sở GD&ĐT Long An (Vòng 2) SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI THPT CẤP TỈNH VÒNG 2 LONG AN NĂM HỌC: 2018-2019 Môn thi: TOÁN ĐỀ CHÍNH THỨC Ngày thi: 20/9/2018 (Buổi thi thứ nhất) (Đề thi có 01 trang, gồm 04 câu) Thời gian: 180 phút (không kể thời gian phát đề) Câu 1 (5,0 điểm): 2x y x y 1 Giải hệ phương trình sau trên tập số thực: . 2x y 4x y 2 Câu 2 (5,0 điểm): Cho hàm số y x 4 2mx 2 3 ( m là tham số thực) có đồ thị C m . Tìm tất cả các giá trị của m sao cho trên đồ thị C m tồn tại duy nhất một điểm mà tiếp tuyến của C m tại điểm đó vuông góc với đường thẳng x 8y 2018 0 . Câu 3 (5,0 điểm): Cho tam giác ABC có ba góc nhọn, không cân và nội tiếp đường tròn O . Gọi H là chân đường cao kẻ từ A và I là tâm đường tròn nội tiếp của tam giác ABC . Đường thẳng AI cắt đường tròn O tại điểm thứ hai M ( M khác A ). Gọi AA ' là đường kính của O . Đường thẳng MA ' cắt các đường thẳng AH , BC theo thứ tự tại N và K . Chứng 900 . minh NIK Câu 4 (5,0 điểm): Cho K là tập hợp các số tự nhiên có bốn chữ số. Chọn ngẫu nhiên một số từ K . Tính xác suất để số được chọn có tổng các chữ số là bội của 4. ---------- HẾT ---------- (Thí sinh không được sử dụng tài liệu – Cán bộ coi thi không giải thích gì thêm) Họ và tên thí sinh: Số báo danh: Cán bộ coi thi 1 (ký, ghi rõ họ và tên) Cán bộ coi thi 2 (ký, ghi rõ họ và tên) SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI THPT CẤP TỈNH VÒNG 2 LONG AN NĂM HỌC: 2018-2019 Môn thi: TOÁN ĐỀ CHÍNH THỨC Ngày thi: 21/9/2018 (Buổi thi thứ hai) (Đề thi có 01 trang, gồm 03 câu) Thời gian: 180 phút (không kể thời gian phát đề) Câu 5 (6,0 điểm): Cho hàm số f : thỏa f xf y f f x f y yf x f x f y , x, y . a) Chứng minh rằng: “Nếu tồn tại a sao cho f a
đang nạp các trang xem trước