tailieunhanh - Một số không gian xác suất trên R

Bài viết đưa ra một số không gian xác suất và từ đó xây dựng một số biến ngẫu nhiên trên không gian xác suất nói trên. Ngoài ra, bài báo cũng xây dựng một số không gian xác suất trên tập số thực cảm sinh bởi các không gian xác suất đã xây dựng. Cuối cùng, một số ví dụ được đưa ra để minh họa cho việc tính kì vọng và phương sai của một số biến ngẫu nhiên trên không gian xác suất đã đề cập đến. | TẠP CHÍ KHOA HỌC Khoa học Tự nhiên và Công nghệ, Số 10 (9/2017) tr 22 - 29 MỘT SỐ KHÔNG GIAN XÁC SUẤT TRÊN Phạm Thị Thái, Đoàn Thị Chuyên, Đặng Kim Phƣơng3 Trường Đại học Tây Bắc Tóm tắt: Bài báo này đưa ra một số không gian xác suất và từ đó xây dựng một số biến ngẫu nhiên trên không gian xác suất nói trên. Ngoài ra, bài báo cũng xây dựng một số không gian xác suất trên tập số thực cảm sinh bởi các không gian xác suất đã xây dựng. Cuối cùng, một số ví dụ được đưa ra để minh họa cho việc tính kì vọng và phương sai của một số biến ngẫu nhiên trên không gian xác suất đã đề cập đến. Từ khóa: - đại số Borel, biến ngẫu nhiên, độ đo xác suất, không gian xác suất, kì vọng, phương sai. 1. Mở đầu Trong toán học, không gian xác suất là nền tảng của lý thuyết xác suất hiện đại (cả trong lý thuyết xác suất cổ điển). Trong lịch sử phát triển của lý thuyết xác suất cổ điển, khái niệm xác suất của biến cố được phát biểu dưới nhiều dạng khác nhau, tuy nhiên có thể thấy những định nghĩa đó đều không nói lên được bản chất toán học của vấn đề. Ngày nay, lý thuyết xác suất được phát triển dựa trên phương pháp tiên đề và lý thuyết độ đo. Điều này đã làm cho lý thuyết xác suất thực sự là một khoa học toán học. Bài báo này xây dựng một số ví dụ minh họa cho một số khái niệm quan trọng trong lý thuyết xác suất hiện đại. Đó là không gian xác suất, biến ngẫu nhiên, không gian xác suất cảm sinh và kì vọng, phương sai của biến ngẫu nhiên trên không gian xác suất tổng quát. Tất cả những vấn đề nêu trên được xây dựng dựa vào lý thuyết chặt chẽ của độ đo, tích phân Lebesgue, Bài báo được trình bày theo bố cục như sau. Trước hết, dựa vào các tài liệu [1], [2] và [3] trình bày các khái niệm cơ bản cần dùng trong lý thuyết xác suất tổng quát như không gian xác suất, biến ngẫu nhiên, không gian xác suất cảm sinh và kì vọng, phương sai của biến ngẫu nhiên ở phần đầu mỗi mục. Tiếp sau đó, trong phần cuối mỗi mục, một số ví dụ minh họa cho những khái niệm đã nêu được xây dựng với tiêu chí là đơn .