tailieunhanh - Đề thi chọn HSG cấp tỉnh môn Toán 12 năm 2018-2019 có đáp án - Sở GD&ĐT Bình Phước

Thông qua việc giải trực tiếp trên “Đề thi chọn HSG cấp tỉnh môn Toán 12 năm 2018-2019 có đáp án - Sở GD&ĐT Bình Phước” các em sẽ nắm vững nội dung bài học, rèn luyện kỹ năng giải đề, hãy tham khảo và ôn thi thật tốt nhé! Chúc các em ôn tập kiểm tra đạt kết quả cao! | Đề thi chọn HSG cấp tỉnh môn Toán 12 năm 2018-2019 có đáp án - Sở GD&ĐT Bình Phước SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI BÌNH PHƯỚC CẤP TỈNH LỚP 12 NĂM 2019 Môn: Toán. ĐỀ CHÍNH THỨC Thời gian làm bài: 180 phút (không kể thời gian phát đề). (Đề thi gồm có 01 trang) Ngày thi: 22/09/2019. x +1 Câu 1. (4 điểm) Cho hàm = ( x) số y f= có đồ thị ( C ) . x −1 a) Khảo sát sự biến thiên và vẽ đồ thị ( C ) của hàm số y = f ( x ) . b) Tìm hai điểm A, B thuộc về hai nhánh của đồ thị ( C ) sao cho AB ngắn nhất. Câu 2. (6 điểm) a) Giải phương trình: ( sin 2 x + cos 2 x ) cos x + 2 cos 2 x − sin x = 0. 2 xy 2 − y − y 2 + 1 + 2 xy 2 4 x 2 + 1 =0 b) Giải hệ phương trình: x − 2 2 x y= 2 x + 6 + 2 3 3 c) Có 27 tấm thẻ được đánh các số tự nhiên từ 1 đến 27 (mỗi thẻ đánh đúng một số). Rút ngẫu nhiên ba thẻ. Tính xác suất để rút được ba thẻ mà tổng các số trên ba thẻ chia hết cho 3. Câu 3. (4 điểm) a) Trong mặt phẳng với hệ trục tọa độ Oxy . Cho tam giác ABC nội tiếp đường tròn tâm I ( −2; −1) , � = 90 , H ( −1; −3) là hình chiếu vuông góc của A lên BC và K ( −1; 2 ) là một điểm thuộc đường thẳng AC . Tìm tọa độ các đỉnh A, B, C . Biết rằng điểm A có hoành độ dương. b) Cho tam giác ABC ( AB < AC ) . Đường phân giác trong góc A cắt đường tròn ngoại tiếp tam giác ABC tại điểm D . Gọi E là giao điểm của đường trung trực của đoạn thẳng AC và đường phân giác ngoài của góc A . Gọi H là giao điểm của DE và AC . Đường thẳng qua H và vuông góc với DE cắt AE tại F . Đường thẳng qua F vuông góc với AE cắt AB tại K . Chứng minh rằng KH song song BC. Câu 4. (3 điểm) Cho hình chóp S . ABCD có đáy ABCD là hình chữ nhật biết=AB a= , BC 2a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng ( ABCD ) . a) Tính thể tích khối chóp S . ACD. b) Tính khoảng cách giữa hai đường thẳng SC và BD. Câu 5. (2 điểm) Cho a, b, c là các số thực không âm thỏa ( a + b )( b + c )( a + c ) > 0 và a ≥ .