tailieunhanh - Phương pháp mô men tổng quát và phương sai thay đổi
Trong bài báo này, tác giả sẽ trình bày ứng dụng của phương pháp mô men tổng quát trong mô hình Klein-I, là một mô hình kinh tế có phương sai thay đổi. Dữ liệu của bài báo được trích xuất từ bộ dữ liệu “” về nền kinh tế Mỹ hàng năm trong giai đoạn 1920-1941. Các tính toán và ước lượng được thực hiện bằng phần mềm Eviews 9. | Phương pháp mô men tổng quát . PHƯƠNG PHÁP MÔ MEN TỔNG QUÁT VÀ PHƯƠNG SAI THAY ĐỔI Phạm Văn Chững*, Đoàn Hồng Chương** TÓM TẮT Phương pháp mô men tổng quát (Generalized Method of Moments, viết tắt là GMM), được giới thiệu bởi Hansen, đã và đang trở thành công cụ thiết yếu cho các nghiên cứu kinh tế, tài chính trong những năm gần đây. Phương pháp này là dạng mở rộng của nhiều phương pháp ước lượng quen thuộc như phương pháp bình phương tối thiểu (LS), phương pháp hồi quy 2 giai đoạn (2SLS), phương pháp dùng biến công cụ (IV) và phương pháp hợp lý cực đại (ML). Ưu điểm của GMM so với các phương pháp được đề cập ở trênlà nó đòi hỏi ít giả thiết hơn và tính toán đơn giản hơn. Một trong những ví dụ điển hình về ưu điểm của GMM so với phương pháp bình phương tối thiểu (LS) là trường hợp mô hình có phương sai thay đổi (Heteroskedasticity). Trong bài báo này, chúng tôi sẽ trình bày ứng dụng của phương pháp mô men tổng quát trong mô hình Klein-I, là một mô hình kinh tế có phương sai thay đổi. Dữ liệu của bài báo được trích xuất từ bộ dữ liệu “” về nền kinh tế Mỹ hàng năm trong giai đoạn tính toán và ước lượng được thực hiện bằng phần mềm Eviews 9. Từ khóa: Phương pháp mô men tổng quát (GMM), Phương sai thay đổi), Mô hình Klein-I. GENERALIZED METHOD OF MOMENTS AND HETEROSKEDASTICITY ABSTRACT The Generalized Method of Moments (GMM), introduced by Hansen, has been an essential tool for economic and financial research in recent years. This method generalizes many usual estimation methods such as Least Squares (LS), Two Stage Least Squares (2SLS), Instrumental Variables (IV) and Maximal Likelihood (ML). The advantage of GMM over the methods mentioned above is that it requires fewer hypotheses and its manipulation method is simple. One of the best examples of the advantage of GMM * versus the Least Squares method (LS) is the case of heteroskedasticity. In this paper, we will present the application of Generalized Method of Moments in the Klein-I .
đang nạp các trang xem trước