tailieunhanh - Bộ 50 đề luyện thi học sinh giỏi môn Toán 9 có đáp án - Sở GD&ĐT Thanh Hóa

Bộ 50 đề luyện thi học sinh giỏi môn Toán 9 có đáp án - Sở GD&ĐT Thanh Hóa giúp các bạn học sinh làm quen với cấu trúc đề thi, các dạng bài tập môn Toán. Mỗi đề thi có đáp án giúp hỗ trợ cho quá trình ôn luyện của các em học sinh lớp 9, nhằm giúp các em học sinh nâng cao kỹ năng luyện đề, chuẩn bị sẵn sàng kiến thức cho các kì thi chọn học sinh giỏi sắp tới. Mời các em cùng tham khảo! | Bộ 50 đề thi HSG môn Toán lớp 9 Sở GD&ĐT Thanh Hóa Đề Số 1 Đề thi học sinh giỏi môn toán lớp 9 (Thời gian làm bài 150’) Câu 1: Giải phương trình. 6x 3 = 3 + 2 x x2 x 1 x Câu 2: Cho hệ phương trình: x - 3y - 3 = 0 x2 + y2 - 2x - 2y - 9 = 0 Gọi (x1; y1) và (x2; y2) là hai nghiệm của hệ phương trình trên. Hãy tìm giá trị của biểu thức. M = (x1- x2)2 + (y1-y2)2. Câu 3: Từ điểm A nằm ngoài đường tròn tâm O kẻ hai tiếp tuyến AB và AC (B,C là các tiếp điểm). Gọi M là điểm bất kỳ trên cung nhỏ BC của đường tròn (O) (M khác B và C). Tiếp tuyến tại M cắt AB và AC tại E, F, đường thẳng BC cắt OE và OF ở P và Q. Chứng minh rằng tỷ số PQ không đổi khi M di chuyển trên cung nhỏ BC. EF Câu 4: Tìm các số x, y, z nguyên dương thoả mãn đẳng thức. 2(y+z) = x (yz-1) Câu 5: Một ngũ giác có tính chất: Tất cả các tam giác có 3 đỉnh là 3 đỉnh liên tiếp của ngũ giác đều có diện tích bằng 1. Tính diện tích của ngũ giác đó. 1 Bộ 50 đề thi HSG môn Toán lớp 9 Sở GD&ĐT Thanh Hóa Đề Số 2 Đề thi học sinh giỏi môn toán lớp 9 (Thời gian làm bài: 150’) Câu 1: Cho biểu thức. (x + x 2 2006) (y y 2 2006) 2006 Hãy tính tổng: S = x + y Câu 2: Trong các cặp số thực (x;y) thoả mãn: x2 x y2 y 0 x 2 y 2 1 Hãy tìm cặp số có tổng x+2y lớn nhất. Câu 3: Tìm các số nguyên dương n sao cho x = 2n + 2003 và y = 3n + 2005 đều là những số chính phương. Câu 4: Cho hai đường tròn (C1) và (C2) tiếp xúc ngoài nhau tại điểm T. Hai đường tròn này nằm trong đường tròn (C3) và tiếp xúc với (C3) tương ứng tại M và N. Tiếp tuyến chung tại T của (C1) và (C2) cắt (C3) tại P. PM cắt đường tròn (C1) tại diểm thứ hai A và MN cắt (C1) tại điểm thứ hai B. PN cắt đường tròn (C2) tại điểm thứ hai D và MN cắt (C2) tại điểm thứ hai C. a. Chứng minh rằng tứ giác ABCD là tứ giác nội tiếp. b. Chứng minh rằng AB, CD và PT đồng quy. Câu 5: Giải phương trình. x2 + 3x + 1 = (x+3) x 2 1 2 Bộ 50 đề thi HSG môn Toán lớp 9 Sở giáo dục và đào tạo Thanh hoá ***** Sở GD&ĐT Thanh Hóa Đề thi học sinh giỏi lớp

TỪ KHÓA LIÊN QUAN