tailieunhanh - Development of AFLP markers associated with zucchini yellow mosaic virus resistance in cucumber (Cucumis sativus L.)

Zucchini yellow mosaic virus (ZYMV) is one of the most important pathogens that cause significant yield losses in many cucurbit crops including cucumber (Cucumis sativus L). ZYMV resistance in cucumber is inherited by a single recessive gene. The purpose of this study was to identify molecular markers linked to the gene conferring ZYMV resistance in cucumber. | Turkish Journal of Botany Turk J Bot (2015) 39: 982-987 © TÜBİTAK doi: Research Article Development of AFLP markers associated with zucchini yellow mosaic virus resistance in cucumber (Cucumis sativus L.) 1,* 1 1 2 Hasan Özgür ŞIĞVA , Ahmet Fikret FIRAT , Gülden HAZARHUN , Ahmet İPEK 1 May-Agro Seed Corp., Bursa, Turkey 2 Department of Horticulture, Faculty of Agriculture, Uludağ University, Görükle Campus, Bursa, Turkey Received: Accepted/Published Online: Printed: Abstract: Zucchini yellow mosaic virus (ZYMV) is one of the most important pathogens that cause significant yield losses in many cucurbit crops including cucumber (Cucumis sativus L). ZYMV resistance in cucumber is inherited by a single recessive gene. The purpose of this study was to identify molecular markers linked to the gene conferring ZYMV resistance in cucumber. We developed a population of 188 F2 plants derived from inbred cucumber lines. Individual F2 plants were self-pollinated to generate F3 populations. Ten randomly selected plants from each F3 population were tested for ZYMV resistance. We used a bulk segregant analysis method to identify putative molecular markers linked to ZYMV resistance. Using bulked DNA samples with parental lines and F1, a total of 170 sequence-related amplified polymorphism (SRAP), 586 simple sequence repeat (SSR), and 308 amplified fragment length polymorphism (AFLP) primer combinations were screened. Neither polymorphic SRAP nor SSR markers were linked with ZYMV resistance. Among the 308 AFLP primer combinations tested, an AFLP marker in the E-ACA/MCA primer combination showed significant association among parental lines, F1, and resistant and susceptible plants. The combination of E-ACA/M-CA was achieved on parental lines, F1, and 188 F2 individuals for confirmation of the marker segregation on the F2 population. We found that the combination of E-ACA/M-CA was .

TỪ KHÓA LIÊN QUAN
crossorigin="anonymous">
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.