tailieunhanh - Characterization of the human sialidase Neu4 gene promoter

There are 4 different sialidases that have been described in humans: lysosomal (Neu1), cytoplasmic (Neu2), plasma membrane (Neu3), and lysosomal/mitochondrial (Neu4). The data we obtained might be useful to discover small molecules, which control selective high expression of the human Neu4 gene, resulting in the normal morphological phenotype in the lysosomes of Tay–Sachs patients. | Turkish Journal of Biology Turk J Biol (2014) 38: 574-580 © TÜBİTAK doi: Research Article Characterization of the human sialidase Neu4 gene promoter 1, 2 Volkan SEYRANTEPE *, Murat DELMAN Department of Molecular Biology and Genetics, İzmir Institute of Technology, Urla İzmir, Turkey 2 Biotechnology and Bioengineering Graduate Program, İzmir Institute of Technology, Urla, İzmir, Turkey 1 Received: Accepted: Published Online: Printed: Abstract: There are 4 different sialidases that have been described in humans: lysosomal (Neu1), cytoplasmic (Neu2), plasma membrane (Neu3), and lysosomal/mitochondrial (Neu4). Previously, we have shown that Neu4 has a broad substrate specificity and is active against glyco-conjugates, including GM2 ganglioside, at the acidic pH of . An overexpression of Neu4 in transfected neuroglia cells from a Tay–Sachs patient shows a clearance of accumulated GM2, indicating the biological importance of Neu4. In this paper, we aimed to characterize a minimal promoter region of the human Neu4 gene in order to understand the molecular mechanism regulating its expression. We cloned 7 different DNA fragments from the human Neu4 promoter region into luciferase expression vectors for a reporter assay and also performed an electrophoretic mobility shift assay to demonstrate the binding of transcription factors. We demonstrated that –187 bp upstream of the Neu4 gene is a minimal promoter region for controlling transcription from the human Neu4 gene. The electrophoretic mobility shift assay showed that the minimal promoter region recruits a c-myc transcription factor, which might be responsible for regulation of Neu4 gene transcription. The data we obtained might be useful to discover small molecules, which control selective high expression of the human Neu4 gene, resulting in the normal morphological phenotype in the lysosomes of Tay–Sachs .