tailieunhanh - Production of 2,3-butanediol by Enterobacter cloacae from corncob-derived xylose

During the process of industrial production of biofuels and biochemicals from lignocellulosic biomass, large amounts of waste byproducts rich in xylose are generated, resulting in excessive wastage of natural resources and environmental pollution. | Turkish Journal of Biology Turk J Biol (2016) 40: 856-865 © TÜBİTAK doi: Research Article Production of 2,3-butanediol by Enterobacter cloacae from corncob-derived xylose Cuiying ZHANG*,**, Wei LI*, Dongsheng WANG, Xuewu GUO, Lijuan MA, Dongguang XIAO Key Laboratory of Industrial Fermentation Microbiology, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China Received: Accepted/Published Online: Final Version: Abstract: During the process of industrial production of biofuels and biochemicals from lignocellulosic biomass, large amounts of waste byproducts rich in xylose are generated, resulting in excessive wastage of natural resources and environmental pollution. In this work, xylose solution from corncob hydrolysate was utilized to produce 2,3-butanediol (2,3-BD), using the strain Enterobacter cloacae CICC 10011 to improve the utilization rate of hemicellulose and reduce environmental pollution. 2,3-BD fermentation conditions were subsequently developed. Xylose solution and (NH4)2HPO4, selected with the Plackett–Burman experiment, were determined as significant independent variables to conduct a response surface experiment. With the optimized medium, g/L 2,3-BD production was obtained, which corresponded to of the theoretical value. Furthermore, g/L 2,3-BD production, g/L the total production (2,3-BD + acetoin), and g/(L h) productivity were obtained by fed-batch fermentation. Therefore, efficient production of 2,3-BD from corncob-derived xylose is important in the future development and expansion of biorefining technologies. Key words: Fermentation, cellulose, 2,3-butanediol, bioreactors, Enterobacter cloacae, microbial growth 1. Introduction The increasing exhaustion of the earth’s natural resources has aroused a growing interest in exploring .

TÀI LIỆU MỚI ĐĂNG
337    145    2    23-12-2024
2    140    1    23-12-2024
54    162    0    23-12-2024
7    107    0    23-12-2024
13    100    0    23-12-2024
5    107    0    23-12-2024
15    107    0    23-12-2024