tailieunhanh - Bài giảng Đại số tuyến tính: Chương 3 - TS. Đặng Văn Vinh
Bài giảng "Đại số tuyến tính - Chương 3: Hệ phương trình tuyến tính" cung cấp cho người học các nội dung: Hệ phương trình tuyến tính tổng quát, hệ phương trình tuyến tính thuần nhất. nội dung chi tiết. | Trường Đại học Bách khoa tp. Hồ Chí Minh Bộ môn Toán Ứng dụng --------------------------------------------------------------Đại số tuyến tính Chương 3: Hệ phương trình tuyến tính Giảng viên Ts. Đặng Văn Vinh (9/2007) Nội dung --------------------------------------------------------------------------------------------------------------------------- I – Hệ phương trình tuyến tính tổng quát II – Hệ phương trình tuyến tính thuần nhất I. Hệ phương trình tuyến tính tổng quát --------------------------------------------------------------------------------------------------------------------------- Định nghĩa hệ phương trình tuyến tính. Hệ phương trình tuyến tính gồm m phương trình, n ẩn có dạng: a11 x1 a12 x2 a x a x 21 1 22 2 am1 x1 am 2 x2 a1n xn a2 n xn amn xm b1 b2 bm a11, a12, , amn được gọi là hệ số của hệ phương trình. b1, b2, , bm được gọi là hệ số tự do của hệ phương trình. I. Hệ phương trình tuyến tính tổng quát --------------------------------------------------------------------------------------------------------------------------- Định nghĩa hệ thuần nhất. Hệ phương trình tuyến tính được gọi là thuần nhất nếu tất cả các hệ số tự do b1, b2, , bm đều bằng 0. Định nghĩa hệ không thuần nhất. Hệ phương trình tuyến tính được gọi là không thuần nhất nếu ít nhất một trong các hệ số tự do b1, b2, , bm khác 0. Nghiệm của hệ là một bộ n số c1, c2, , cm sao cho khi thay vào từng phương trình của hệ ta được những đẳng thức đúng. I. Hệ phương trình tuyến tính tổng quát --------------------------------------------------------------------------------------------------------------------------- Một hệ phương trình tuyến tính có thể: 1. vô nghiệm, Hệ không tương thích 2. có duy nhất một nghiệm Hệ tương thích 3. Có vô số nghiệm Hai hệ phương trình được gọi là tương đương nếu chúng cùng chung một tập nghiệm. Để giải hệ phương trình ta dùng các phép biến đổi hệ .
đang nạp các trang xem trước