tailieunhanh - Bài giảng Xử lý ảnh số (Chương trình dành cho kỹ sư CNTT): Các phép biến đổi ảnh (tiếp theo) - Nguyễn Linh Giang
Bài giảng Xử lý ảnh số (Chương trình dành cho kỹ sư CNTT): Các phép biến đổi ảnh (tiếp theo). Bài này trình này những nội dung chủ yếu như: Biến đổi đơn nguyên (unitary), phép biến đổi Fourier đơn nguyên. để biết thêm các nội dung chi tiết. | Xử lý ảnh số Các phép biến đổi ảnh Chương trình dành cho kỹ sư CNTT Nguyễn Linh Giang Các phép biến đổi ảnh • • • • • • Biến đổi đơn nguyên ( unitary ) Biến đổi Fourier Biến đổi sin, cosin Biến đổi Hadamar Biến đổi Haar Biến đổi K-L Biến đổi đơn nguyên ( unitary ) • Ma trận Unitar và ma trận trực giao – Ma trận A là trực giao nếu A-1 = AT hay AAT = I • Ví dụ: 1 1 1 A= 2 1 −1 – Ma trận A là ma trận đơn nguyên ( unitary ) nếu A-1 = A*T hay AA*T = I 1 1 j • Ví dụ: 1 1 1 A= A= 2 j 1 2 1 −1 – Ma trận A là thực thì A = A*, tính trực giao và tính đơn nguyên trùng nhau. – Ma trận A*T còn gọi là AH – ma trận Hermitian Biến đổi đơn nguyên ( unitary ) • Biến đổi unitar một chiều ( 1D-unitary ) – – – – A ma trận đơn nguyên, AA*T=I s(n) = { s(0), s(1), ., s(n-1)} S = (s0, s1, ., sn-1)T ⎧ V = AS Biến đổi đơn nguyên một chiều: ⎨S = A*T V ⎩ S = A-1 V = A*T V = Σiai*T vi trong đó ai*T = (a*i,0, , a*i,N-1)T – là cội thứ i của ma trận A*T và là hàng thứ i của ma trận A* – ai*T gọi là vector cơ sở của phép biến đổi đơn nguyên A – Phép biến đổi đơn nguyên A phân tích vector S thành tổ hơp tuyến tính của các vector cơ sở với vector hệ số phân tích là V Biến đổi đơn nguyên ( unitary ) – Ví dụ: • với A = I = ( ., Ei, . ), ta có s = ∑iaivi = ∑iEivi , trong đó Ei là vector đơn vị cơ sở và bằng: Ei = ( 0, ., 0, 1, 0, ., 0 .
đang nạp các trang xem trước