tailieunhanh - Về độ tin cậy trong bài toán bảo hiểm nhân thọ
Bài báo này sẽ sử dụng lý thuyết độ tin cậy - một ngành toán học thuộc lĩnh vực Xác suất - Thống kê - để khảo sát bài toán bảo hiểm nhân thọ. Trước hết, ta đưa ra khái niệm căn bản về bảo hiểm nhân thọ và lý thuyết độ tin cậy. | TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 11, SOÁ 06 - 2008 VỀ ĐỘ TIN CẬY TRONG BÀI TOÁN BẢO HIỂM NHÂN THỌ Ung Ngọc Quang, Tô Anh Dũng, Nguyễn Minh Hải Nguyễn Đức Phương, Phan Trọng Nghĩa Trường Đại học Khoa học Tự nhiên, ĐHQG-HCM 1. ĐẶT VẤN ĐỀ Bảo hiểm là vấn đề thời sự hiện nay. Từ đầu thế kỷ XX, lý thuyết xác suất và thống kê toán học đã được ứng dụng trong toán bảo hiểm. Một trong những vấn đề được quan tâm trong bảo hiểm là bảo hiểm nhân thọ (Xem [1], [2],[3]). Bài báo này sẽ sử dụng lý thuyết độ tin cậy - một ngành toán học thuộc lĩnh vực Xác suất Thống kê - để khảo sát bài toán bảo hiểm nhân thọ. Trước hết, ta đưa ra khái niệm căn bản về bảo hiểm nhân thọ và lý thuyết độ tin cậy (Xem [4]). 2. SƠ LƯỢC VỀ BẢO HIỂM NHÂN THỌ VÀ ĐỘ TIN CẬY nghĩa Gọi t = 0 là thời điểm mà một người bắt đầu mua bảo hiểm. Gọi T là thời gian sống của người đó từ lúc bắt đầu mua bảo hiểm cho đến lúc tử vong. Trong bài toán này ta sẽ coi T là một đại lượng ngẫu nhiên liên tục. Gọi F (t ) = P (T ≤ t ) là hàm phân phối xác suất của T . Đặt S (t ) = 1 − F (t ) = P (T > t ), t ≥ 0 . Người ta gọi S (t ) là hàm sống của cá thể đang khảo sát nghĩa Xét một hệ thống (kỹ thuật, sinh học, kinh tế vv.) gồm nhiều phần tử hợp thành. Giả sử tại thời điểm t = 0 , một phần tử trong hệ thống này bắt đầu hoạt động. Người ta gọi thời gian T mà phần tử ấy bắt đầu hoạt động cho tới lần hư hỏng đầu tiên là thời gian sống hay tuổi thọ của phần tử ấy (Xem [4]). Người ta gọi xác suất làm việc không hư của một phần tử cho tới thời điểm t là độ tin cậy R(t ) = P {T > t} (hàm tin cậy) của phần tử đó và ký hiệu (Xem [4]). Người ta gọi xác suất hư hỏng cho tới thời điểm t của phần tử đó là độ không tin cậy và ký hiệu F (t ) = P {T ≤ t} . Hiển nhiên F (t ) là hàm phân phối xác suất của T và ta có R (t ) = 1 − F (t ) . Rõ ràng hàm sống S (t ) trong bảo hiểm nhân thọ chính là hàm tin cậy R (t ) trong lý thuyết độ tin cậy. Hơn nữa nguy cơ tử vong của một cá thể trong bảo hiểm nhân thọ chính là
đang nạp các trang xem trước