tailieunhanh - A finite volume model on unstructured meshes and application in computing two dimensional flows
bài báo trình bày một số kỹ thuật xấp xỉ thông lượng giữa các nốt trên lưới phi cấu trúc trong kỹ thuật thể tích hữu hạn. Các phương pháp này được thử nghiệm vào một mô hình nước nông hai chiều trên lưới tam giác phi cấu trúc. . | Journal of Computer Science and Cybernetics, , (2011),72–82 A FINITE VOLUME MODEL ON UNSTRUCTURED MESHES AND APPLICATION IN COMPUTING TWO DIMENSIONAL FLOWS∗ TRAN GIA LICH1 , LE DUC2 1 Institute 2 of Mathematics, Vietnam Academy of Science and technology National Center for Hydro-Meteorological Forecasting Hanoi, Vietnam Abstract. Some methods in approximation of fluxes between adjacent cells have been proposed in context of the finite volume technique on unstructured meshes. A shallow water model has been developed for testing the proposed methods. The third order Adams-Bashforth scheme is used in integrating the governing equations. A filter is designed to remove spurious waves. The model is tested on unstructured triangular meshes with some examples in literature. ´ ´ ’ o ´ e ´ T´m t˘t. B`i b´o tr` b`y mˆt sˆ k˜ thuˆt xˆp xı thˆng gi˜.a c´c nˆt trˆn lu.´.i phi cˆu o a a a ınh a o o y a a u a o o a . ´ . . .u han. C´c ph´p n`y thu. nghiˆm v`o mˆt mˆ h` ’ ’ tr´c trong k˜ thuˆt thˆ t´ h˜ u y a e ıch u a a a e a o o ınh . . . . . ` ` ´ nu.´.c nˆng hai chiˆu trˆn lu.´.i tam gi´c phi cˆu tr´c. Mˆ h` n`y su. dung so. dˆ t´ phˆn th`.i gian o o e e o a a u o ınh a ’ . o ıch a o ˜ Adams-Bashforth bˆc ba. Mˆt bˆ loc c˜ng v`o mˆ h` nh˘ m loai bo c´c s´ng nhiˆu sinh a o o . u a o ınh ` a e . . . . . ’ a o . su. dung nh˘ m kiˆm tra k˜ n˘ng mˆ phong ’ ˜ ` ’ ra trong qu´ tr` t´ phˆn. C´c b`i to´n mˆu s˜ du . ’ . a ınh ıch a a a a a e a e y a o ’ cua mˆ h` o ınh. 1. INTRODUCTION A model simulating flow in rivers, coastal areas,. should be able to resolve many natural phenomena in such domains. Because natural phenomena range from small scales to large scales, meshes used in models must vary and depend on problem geometries. To resolve varying geometries in complex domains, unstructured meshes are more favorable than structured uniform meshes. Finite volumes and finite elements are two numerical methods used for this kind of meshes.
đang nạp các trang xem trước