tailieunhanh - Bài giảng Toán cao cấp: Phép tính vi phân hàm một biến - ThS. Nguyễn Văn Phong

Bài giảng Toán cao cấp: Phép tính vi phân hàm một biến trình bày các kiến thức về hàm số, hàm số sơ cấp, các phép toán, giới hạn hàm số, hàm liên tục, đạo hàm, ứng dụng của đạo hàm. nội dung chi tiết. | PHÉP TÍNH VI TÍCH PHÂN HÀM MỘT BIẾN Nguyễn Văn Phong Toán cao cấp - MS: MAT1006 Nguyễn Văn Phong (BMT - TK) GIẢI TÍCH Toán cao cấp - MS: MAT1006 1 / 23 Nội dung 1 HÀM SỐ 2 HÀM SỐ SƠ CẤP 3 CÁC PHÉP TOÁN 4 GIỚI HẠN HÀM SỐ 5 HÀM LIÊN TỤC 6 ĐẠO HÀM 7 ỨNG DỤNG ĐẠO HÀM Nguyễn Văn Phong (BMT - TK) GIẢI TÍCH Toán cao cấp - MS: MAT1006 1 / 23 Hàm số Định nghĩa Hàm số f là một liên kết mỗi phần tử x ∈ X ⊂ R với một phần tử duy nhất y ∈ Y ⊂ R, ký hiệu f (x). Ta viết f :X → Y x → y = f (x) Khi đó y được gọi là ảnh của x qua f (hay ta còn nói f biến x thành y ); X được gọi là miền xác định của f , ký hiệu Df ; Tập Y = {y = f (x) |x ∈ D } là tập ảnh của f hay còn gọi là tập xác định của f , ký hiệu Rf . Nguyễn Văn Phong (BMT - TK) GIẢI TÍCH Toán cao cấp - MS: MAT1006 2 / 23 Đơn ánh - Toàn ánh - Song ánh 1. Hàm f : X → Y là đơn ánh nếu ∀x ∈ D, f (x) = f (x ) ⇒ x = x . 2. Hàm f : X → Y là toàn ánh nếu f (X ) = Y ⇔ ∀y ∈ Y , ∃x ∈ X : f (x) = y . 3. Hàm f : X → Y là song ánh nếu ∀y ∈ Y , ∃!x ∈ X : f (x) = y . Nghĩa là, f vừa là đơn ánh vừa là toàn ánh. Nguyễn Văn Phong (BMT - TK) GIẢI TÍCH Toán cao cấp - MS: MAT1006 3 / 23 Hàm sơ cấp 1. Hàm luỹ thừa và căn thức: √ f (x) = x n và f (x) = n x với x ∈ N 2. Hàm mũ và Logarit: f (x) = ax và f (x) = loga x, với 0 < a = 1. 3. Hàm lượng giác: f (x) = sin x; f (x) = cos x; f (x) = tan x. 4. Hàm lượng giác ngược: f (x) = arcsin x; f (x) = arccos x; f (x) = arctan x. Nguyễn Văn Phong (BMT - TK) GIẢI TÍCH Toán cao cấp - MS: MAT1006 4 / .