tailieunhanh - Bài giảng Thống kê trong kinh doanh và kinh tế: Chương 9 - Chế Ngọc Hà
Bài giảng "Thống kê trong kinh doanh và kinh tế - Chương 9: Tương quan, hồi quy tuyến tính" cung cấp cho người học các kiến thức: Tương quan tuyến tính, hồi qui tuyến tính đơn giản, hồi qui tuyến tính bội, một số dạng hàm. . | Chương 9 TƯƠNG QUAN, HỒI QUI TUYẾN TÍNH QUAN TUYẾN TÍNH 1. Khái niệm: được gọi là đại lượng đo lường mối tương quan tuyến tính của 2 đại lượng ngẫu nhiên X và Y nếu: -1 1 * 0: X, Y có mối liên hệ thuận * = 0: X, Y không có mối liên hệ. * : càng lớn thì X, Y có mối liên hệ càng chặt chẽ. 1 QUAN TUYẾN TÍNH 2. Hệ số tương quan mẫu: Chọn ngẫu nhiên n cặp quan sát (xi, yi) từ hai tổng thể X,Y. Ta có hệ số tương quan Spearson: n r ( xi x )( yi y ) i 1 n n 2 ( x x ) ( y y ) i i i 1 2 i 1 Trường hợp |r| ≥ 0,8 chúng ta có thể kết luận X, Y có mối tương quan tuyến tính chặt chẽ. Để đảm bảo tính chính xác này, chúng ta có thể thực hiện kiểm định giả thuyết 2 QUI TUYẾN TÍNH ĐƠN GIẢN 1. Khái niệm hồi qui: Ví dụ, Nghiên cứu mối liên hệ giữa chi tiêu Y và thu nhập X của hộ gia đình: X 80 100 120 140 160 180 200 220 240 260 55 65 79 80 102 110 120 135 137 150 60 70 84 93 107 115 136 137 145 152 65 74 90 95 110 120 140 140 155 175 70 80 94 103 116 130 144 152 165 178 75 85 98 108 118 135 145 157 175 180 113 125 140 160 189 185 Y 88 115 E(Y/Xi) 65 77 89 101 162 113 125 137 149 191 161 173 3 QUI TUYẾN TÍNH ĐƠN GIẢN • E(Y/X) = f(X) : Phương trình hồi qui • E(Y/X) = + X: Phương trình hồi qui tuyến tính • Y = + X + U : Giá trị thực của Y Trong đó: • X: biến giải thích (độc lập); • Y: biến được giải thích (phụ thuộc) • : Tham số chặn • : Tham số của biến • U: Yếu tố ngẫu nhiên • X,Y không có mối quan hệ hàm số mà có mối quan hệ nhân quả và thống .
đang nạp các trang xem trước