tailieunhanh - Giải bài tập Khối đa diện SGK Hình học 12

Nội dung tài liệu gồm phần đáp án và gợi ý cách giải bài tập khối đa diện trang 26,27 một cách chi tiết và dễ hiểu. Mời các em tham khảo tài liệu để có thêm những phương pháp giải bài tập hay, khoa học. Hy vọng tài liệu sẽ là tài liệu hữu ích giúp quá trình học tập của các em được tốt hơn! | Các em học sinh có thể xem nội dung dưới đây để nắm bắt nội dung chi tiết của tài liệu hơn. Ngoài ra, để nâng cao kỹ năng giải bài tập, mời các em cùng tham khảo thêm các dạng Bài tập về khối đa diện. Hoặc để chuẩn bị tốt và đạt được kết quả cao trong kỳ thi tốt nghiệp THPT Quốc gia sắp tới, các em có thể tham gia khóa học online Luyện thi toàn diện THPT Quốc gia môn Toán năm 2017 trên website HỌC247. A. Tóm tắt Lý thuyết Khối đa diện Hình học 12 1. Hình đa diện (gọi tắt là đa diện) (H) là hình được tạo bởi một số hữu hạn các đa giác thỏa mãn hai điều kiện: a) Hai đa giác phân biệt chỉ có thể hoặc không giao nhau, hoặc chỉ có một đỉnh chung, hoặc chỉ có một cạnh chung. b) Mỗi cạnh của đa giác nào cũng là cạnh chung của đúng hai đa giác. Mỗi đa giác như thế được gọi là một mặt của hình đa diện (H). Các đỉnh, cạnh của các đa giác ấy theo thứ tự gọi là các đỉnh, cạnh của hình đa diện (H). 2. Phần không gian được giới hạn bới một hình đa diện (H) được gọi là khối đa diện (H). 3. Mỗi đa diện (H) chia các điểm còn lại của không gian thành hai miền không giao nhau: miền trong và miền ngoài của (H). Trong đó chỉ có duy nhất miền ngoài là chứa hoàn toàn một đường thẳng nào đấy. Các điểm thuộc miền trong là các điểm trong, các điểm thuộc miền ngoài là các điểm ngoài của (H). Khối đa diện (H) là hợp của hình đa diện (H) và miền trong của nó. 4. Phép dời hình và sự bằng nhau giữa các khối đa diện. a) Trong không gian quy tắc đặt tương ứng mỗi điểm M với điểm M’ xác định duy nhất được gọi là một phép biến hình trong không gian. b) Phép biến hình trong không gian được gọi là phép dời hình nếu nó bảo toàn khoảng cách giữa hai điểm tùy ý. c) Thực hiện liên tiếp các phép dời hình sẽ được một phép dời hình. d) Phép dời hình biến một đa diện thành một đa diện, biến các đỉnh, cạnh, mặt của đa diện này thành đỉnh, cạnh, mặt tương ứng của đa diện kia. e) Một số ví dụ về phép dời hình trong không gian .

TỪ KHÓA LIÊN QUAN