tailieunhanh - On non-homogeneous Riemann boundary value problem

In this paper we consider non-homogeneous Riemann boundary value problem with unbounded oscillating coefficients on a class of open rectifiable Jordan curve. | Turk J Math 24 (2000) , 251 – 257. ¨ ITAK ˙ c TUB On Non-Homogeneous Riemann Boundary Value Problem Kadir Kutlu Abstract In this paper we consider non-homogeneous Riemann boundary value problem with unbounded oscillating coefficients on a class of open rectifiable Jordan curve. Key Words: Curve, Cauchy type integral, singular integral, Riemann problem. In [1], homogeneous Riemann boundary value problem was studied when curve γ satisfies the condition θ(δ) ≈ δ and G is an oscillating function at the end points of the curve. In this work we investigate the non-homogeneous Riemann problem in the same case and we will use terminology and notations introduced in [1]. We need the following class of functions for our future references: H a1 (µ1 , ν1) + H a2 (µ2 , ν2 ) = {g ∈ Cγ : g = g1 + g2 , gk ∈ Cγ , Ωagkk (ξ) = O(ξ −νk ), ωgakk (δ, ξ) = O(δ µk ξ −µk −νk )} where k = 1; 2, µk ∈ (0, 1], νk ∈ [0, 1), δ, ξ ∈ (0, d], δ ≤ ξ, d = diam γ. Lemma 1. [3] Suppose that γ satisfies θ(δ) ≈ δ, G(t)=exp(2πif(t)), Ωaf k (ξ) = O (ln 1ξ ), ωfak (δ, ξ) = O ( δξ ), δ ≤ ξ, k = 1, 2, g ∈ Ha1 (µ1 , ν1) + Ha2 (µ2 , ν2 ) and suppose 1991 AMS subject classification: Primary 30E20, 30E25; secondary 45E05 251 KUTLU h is holomorphic in C\γ, continuously extendable to γˆ from both sides, h(z)6=0 for all z∈ C\γ, h± (t)6=0 for all t∈ γˆ , h+ (t) = G(t)h− (t), g/h+ ∈ L (γ). Then the function Φ0 (z) = h(t) 2πi Z γ g(τ ) dτ, z 6∈ γ h+ (τ )(τ − z) (1) is holomorphic in C\γ, continuously extendable to γˆ from both sides and satisfies the homogeneous boundary conditions We introduce the quantity k 1 Re z→ak ln | z − ak | Z ∆G = lim γ f(τ ) dτ, z 6∈ γ τ −z (2) k and if ∆G is finite introduce k ∆k , if ∆G ∈ Z h Gk i æ0k = ∆G + 1, if ∆kG 6∈ Z (3) k=1,2. Lemma 2. Suppose that γ satisfies θ(δ) ≈ δ, G and g are as in lemma1 and 0 0 χ0 (z) = (z − a1 )−æ1 (z − a2 )−æ2 exp Z γ f(τ ) dτ, z 6∈ γ. τ −z Then g/χ+ 0 is integrable on γ. Proof. It is obvious that g/χ+ 0 is bounded on a

crossorigin="anonymous">
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.