# tailieunhanh - An expansion result for a Sturm-Liouville eigenvalue problem with impulse

## The paper is concerned with an eigenvalue problem for second order differential equations with impulse. Such a problem arises when the method of separation of variables applies to the heat conduction equation for two-layered composite. | Turk J Math 34 (2010) , 355 – 366. ¨ ITAK ˙ c TUB doi: An expansion result for a Sturm-Liouville eigenvalue problem with impulse S ¸ erife Faydao˘glu and Gusein Sh. Guseinov Abstract The paper is concerned with an eigenvalue problem for second order diﬀerential equations with impulse. Such a problem arises when the method of separation of variables applies to the heat conduction equation for two-layered composite. The existence of a countably inﬁnite set of eigenvalues and eigenfunctions is proved and a uniformly convergent expansion formula in the eigenfunctions is established. Key Words: Green’s function; Completely continuous operator; Impulse conditions; Eigenvalue; Eigenvector. 1. Introduction An equation for temperatures in a solid 0 ≤ x ≤ b composed of a layer 0 ≤ x 0. We shall assume that ρ(x), p(x), and q(x) are real-valued, p(x) is diﬀerentiable on [0, a) ∪ (a, b] , ρ(x), p (x), and q(x) are piecewise continuous on [0, a) ∪ (a, b] and ρ(x) > 0 , p(x) > 0 , q(x) ≥ 0 . In addition, it is assumed that there exist ﬁnite left-sided and right-sided limits ρ(a ± 0), p(a ± 0), and q(a ± 0), and that ρ(a ± 0) > 0 , p(a ± 0) > 0 . For solution u(x, t) of equation (1) we take at x = a interface conditions of the form u(a − 0, t) = αu(a + 0, t), ux(a − 0, t) = βux (a + 0, t), (2) in which α and β are given positive real numbers, and at the end faces x = 0 and x = b we take the zero temperature conditions u(0, t) = u(b, t) = 0. (3) AMS Mathematics Subject Classiﬁcation: 34L10. 355 ˘ FAYDAOGLU, GUSEINOV The initial temperature of the composite is given by u(x, 0) = f(x), x ∈ [0, a) ∪ (a, b]. (4) Note that the conditions in (2) represent an impulse phenomenon at x = a (see [2, 3, 10, 14]). Let us look for a nontrivial solution of (1)–(3), ignoring the initial condition (4), which has the form u(x, t) = e−λt y(x), x ∈ [0, a) ∪ (a, b], (5) where λ is a complex constant and y(x) is a function independent of t (but, in general, .

TÀI LIỆU LIÊN QUAN
TÀI LIỆU XEM NHIỀU
8    459838    35
14    8798    13
13    8330    458
3    7903    101
14    7597    381
8    6562    2073
16    6215    374
7    4503    1
2    3912    45
9    3881    10
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
2    138    0    29-06-2022
12    58    0    29-06-2022
11    35    1    29-06-2022
1    71    0    29-06-2022
5    80    0    29-06-2022
510    56    0    29-06-2022
22    76    0    29-06-2022
26    112    4    29-06-2022
95    3    1    29-06-2022
21    63    0    29-06-2022
TÀI LIỆU HOT
8    6562    2073
112    2388    1075
249    3505    611
561    1531    524
122    2474    478
13    8330    458
35    2462    390
14    7597    381
16    6215    374
20    2883    313
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này. 