# tailieunhanh - Characterizations of slant helices in Euclidean 3-space

## In this paper we investigate the relations between a general helix and a slant helix. Moreover, we obtain some differential equations which they are characterizations for a space curve to be a slant helix. Also, we obtain the slant helix equations and its Frenet aparatus. | Turk J Math 34 (2010) , 261 – 273. ¨ ITAK ˙ c TUB doi: Characterizations of slant helices in Euclidean 3-space ˙ L. Kula, N. Ekmekci, Y. Yaylı and K. Ilarslan Abstract In this paper we investigate the relations between a general helix and a slant helix. Moreover, we obtain some diﬀerential equations which they are characterizations for a space curve to be a slant helix. Also, we obtain the slant helix equations and its Frenet aparatus. Key Words: Slant helix, genaral helix, spherical helix, tangent indicatrix, principal normal indicatrix and binormal indicatrix. 1. Introduction In diﬀerential geometry, a curve of constant slope or general helix in Euclidean 3-space R3 is deﬁned by the property that the tangent makes a constant angle with a ﬁxed straight line (the axis of the general helix). A classical result stated by M. A. Lancret in 1802 and ﬁrst proved by B. de Saint Venant in 1845 (see [11, 13] for details) is: A necessary and suﬃcient condition that a curve be a general helix is that the ratio of curvature to torsion be constant. If both of κ and τ are non-zero constant it is, of course, a general helix. We call it a circular helix. Its known that straight line and circle are degenerate-helix examples (κ = 0 , if the curve is straight line and τ = 0 , if the curve is a circle). The study of these curves in R3 as spherical curves is given by Monterde in [12] . The Lancret theorem was revisited and solved by Barros (in [2] ) in 3-dimensional real space forms by using killing vector ﬁelds as along curves. Also in the same space-forms, a characterization of helices and Cornu spirals is given by Arroyo, Barros and Garay in [1] . On the studies of general helices in Lorentzian space forms, Lorentz-Minkowski spaces, semi-Riemannian manifolds, we refer to the papers [3, 4, 5, 6, 7, 9] . In [8] , A slant helix in Euclidean space R3 was deﬁned by the property that the principal normal makes a constant angle with a ﬁxed direction. Moreover, .

TÀI LIỆU LIÊN QUAN
13    54    0
15    29    0
TÀI LIỆU XEM NHIỀU
8    459823    35
14    8773    13
13    8326    457
3    7901    101
14    7594    381
8    6558    2073
16    6201    374
7    4501    1
2    3911    45
9    3877    10
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
7    5    1    28-06-2022
33    17    1    28-06-2022
5    58    0    28-06-2022
26    62    0    28-06-2022
10    82    0    28-06-2022
12    58    0    28-06-2022
5    79    0    28-06-2022
26    32    1    28-06-2022
5    57    0    28-06-2022
20    78    0    28-06-2022
TÀI LIỆU HOT
8    6558    2073
112    2386    1075
249    3456    606
561    1529    523
122    2472    478
13    8326    457
35    2459    390
14    7594    381
16    6201    374
20    2880    313
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.