# tailieunhanh - The principal eigencurves for a nonselfadjoint elliptic operator

## In this paper we study the existence of the principal eigencurves for a nonselfadjoint elliptic operator. We obtain their variational formulation. We establish also the continuity and the differentiability of the principal eigencurves. | Turk J Math 34 (2010) , 197 – 205. ¨ ITAK ˙ c TUB doi: The principal eigencurves for a nonselfadjoint elliptic operator Aomar Anane, Omar Chakrone and Abdellah Zerouali Abstract In this paper we study the existence of the principal eigencurves for a nonselfadjoint elliptic operator. We obtain their variational formulation. We establish also the continuity and the diﬀerentiability of the principal eigencurves. Key Words: Nonsefadjoint elliptic operator , principl eigenvalue, principl eigencurve, Holland’s formula. 1. Introduction In this paper we consider the following problem ⎧ 1 ⎪ ⎪ ⎨ To ﬁnd (λ, u) ∈ R × H (Ω) \ {0} such that (Pμ ) Lu − μm1 (x)u = λm2 (x)u ⎪ ⎪ ⎩ Bu = 0 in Ω, on ∂Ω, where Ω is a bounded C 1,1 domain in RN (N ≥ 1) with boundary ∂Ω, L is a second order elliptic operator of the form Lu := −div(A(x) +a0 (x)U, and B is a ﬁrst order boundary operator of Neumann or Robin type: Bu := b(x), ∇u + b0 (x)u, where , denotes the scalar product in RN , the coeﬃcient of L and B satisfy the condition where A(x) = (ai,j (x)) is a symmetric, uniformly positive deﬁnite N × N matrix, with ai,j ∈ C 0,1 (Ω), a and a0 ∈ L∞ (Ω), b and b0 ∈ C 0,1 (Ω), with b, ν > 0 (where ν is the unit exterior normal) and b0 ≥ 0 on ∂Ω, μ is a real parameter; and m1 and m2 ∈ L∞ (Ω) are possibly indeﬁnite weights, with m1 and m2 ≡ 0 . The selfadjoint case (a ≡ 0 ) was considered by several authors, in particular . Binding and Y. X. Huang in  , A. Dakkake and M. Hadda in  . For μ = 0 , the problem (Pμ ) was studied by T. Godoy, J. P. Gossez and 2000 AMS Mathematics Subject Classiﬁcation: 35J20, 35J70, 35P05, 35P30. 197 ANANE, CHAKRONE, ZEROUALI S. Paczka in  . They gave a formula of minimax type (called Holland’s formula (cf., .,  )) for the principal eigenvalues of this problem. They gave also an application of this formula of minimax to the antimaximum principle. In this paper we study the existence of the principal eigencurves for .

TÀI LIỆU LIÊN QUAN
9    35    0
TÀI LIỆU XEM NHIỀU
8    459823    35
14    8773    13
13    8326    457
3    7901    101
14    7594    381
8    6558    2073
16    6201    374
7    4501    1
2    3911    45
9    3877    10
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
10    68    0    28-06-2022
100    33    1    28-06-2022
48    79    2    28-06-2022
17    70    0    28-06-2022
6    62    0    28-06-2022
6    79    0    28-06-2022
4    71    2    28-06-2022
110    72    0    28-06-2022
15    27    2    28-06-2022
6    60    0    28-06-2022
TÀI LIỆU HOT
8    6558    2073
112    2386    1075
249    3456    606
561    1529    523
122    2472    478
13    8326    457
35    2459    390
14    7594    381
16    6201    374
20    2880    313
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này. 