# tailieunhanh - The principal eigencurves for a nonselfadjoint elliptic operator

## In this paper we study the existence of the principal eigencurves for a nonselfadjoint elliptic operator. We obtain their variational formulation. We establish also the continuity and the differentiability of the principal eigencurves. | Turk J Math 34 (2010) , 197 – 205. ¨ ITAK ˙ c TUB doi: The principal eigencurves for a nonselfadjoint elliptic operator Aomar Anane, Omar Chakrone and Abdellah Zerouali Abstract In this paper we study the existence of the principal eigencurves for a nonselfadjoint elliptic operator. We obtain their variational formulation. We establish also the continuity and the diﬀerentiability of the principal eigencurves. Key Words: Nonsefadjoint elliptic operator , principl eigenvalue, principl eigencurve, Holland’s formula. 1. Introduction In this paper we consider the following problem ⎧ 1 ⎪ ⎪ ⎨ To ﬁnd (λ, u) ∈ R × H (Ω) \ {0} such that (Pμ ) Lu − μm1 (x)u = λm2 (x)u ⎪ ⎪ ⎩ Bu = 0 in Ω, on ∂Ω, where Ω is a bounded C 1,1 domain in RN (N ≥ 1) with boundary ∂Ω, L is a second order elliptic operator of the form Lu := −div(A(x) +a0 (x)U, and B is a ﬁrst order boundary operator of Neumann or Robin type: Bu := b(x), ∇u + b0 (x)u, where , denotes the scalar product in RN , the coeﬃcient of L and B satisfy the condition where A(x) = (ai,j (x)) is a symmetric, uniformly positive deﬁnite N × N matrix, with ai,j ∈ C 0,1 (Ω), a and a0 ∈ L∞ (Ω), b and b0 ∈ C 0,1 (Ω), with b, ν > 0 (where ν is the unit exterior normal) and b0 ≥ 0 on ∂Ω, μ is a real parameter; and m1 and m2 ∈ L∞ (Ω) are possibly indeﬁnite weights, with m1 and m2 ≡ 0 . The selfadjoint case (a ≡ 0 ) was considered by several authors, in particular . Binding and Y. X. Huang in  , A. Dakkake and M. Hadda in  . For μ = 0 , the problem (Pμ ) was studied by T. Godoy, J. P. Gossez and 2000 AMS Mathematics Subject Classiﬁcation: 35J20, 35J70, 35P05, 35P30. 197 ANANE, CHAKRONE, ZEROUALI S. Paczka in  . They gave a formula of minimax type (called Holland’s formula (cf., .,  )) for the principal eigenvalues of this problem. They gave also an application of this formula of minimax to the antimaximum principle. In this paper we study the existence of the principal eigencurves for .

TÀI LIỆU LIÊN QUAN
9    19    0
TÀI LIỆU XEM NHIỀU
8    17056    2
3    6514    89
14    5179    254
8    4731    1598
2    3104    26
24    3022    56
9    2895    5
35    2815    139
29    2671    78
8    2532    22
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
6    27    0    20-06-2021
52    59    0    20-06-2021
34    46    2    20-06-2021
10    29    0    20-06-2021
6    26    0    20-06-2021
19    27    0    20-06-2021
23    1    1    20-06-2021
1    28    0    20-06-2021
8    27    0    20-06-2021
3    35    0    20-06-2021
TÀI LIỆU HOT
8    4731    1598
112    1103    459
122    1049    309
14    5179    254
20    1888    233
36    1564    216
35    1260    210
21    2247    183
16    2235    179
171    1159    177