# tailieunhanh - Trace formulae for Schr¨odinger systems on graphs

## For Schr¨odinger systems on metric graphs with δ-type conditions at the central vertex, firstly, we obtain precise description for the square root of the large eigenvalue up to the o(1/n)-term. Secondly, the regularized trace formulae for Schr¨odinger systems are calculated with some techniques in classical analysis. Finally, these formulae are used to obtain a result of inverse problem in the spirit of Ambarzumyan. | Turk J Math 34 (2010) , 181 – 196. ¨ ITAK ˙ c TUB doi: Trace formulae for Schr¨ odinger systems on graphs Chuan-Fu Yang, Zhen-You Huang and Xiao-Ping Yang Abstract For Schr¨ odinger systems on metric graphs with δ -type conditions at the central vertex, ﬁrstly, we obtain precise description for the square root of the large eigenvalue up to the o(1/n) -term. Secondly, the regularized trace formulae for Schr¨ odinger systems are calculated with some techniques in classical analysis. Finally, these formulae are used to obtain a result of inverse problem in the spirit of Ambarzumyan. Key Words: Schr¨ odinger systems, metric graph, δ -type conditions, trace formula, Ambarzumyan-type theorem 1. Introduction In a ﬁnite-dimensional space, an operator has a ﬁnite trace. But in an inﬁnite-dimensional space, ordinary diﬀerential operators do not necessarily have ﬁnite trace (the sum of all eigenvalues). But Gelfand and Levitan  observed that the sum n (λn − μn ) often makes sense, where {λn } and {μn } are the eigenvalues of the “perturbed problem” and “unperturbed problem”, respectively. The sum n (λn − μn ) is called a regularized trace. Gelfand and Levitan ﬁrst obtained an identity of trace for the Schr¨ odinger operator . We describe brieﬂy here the result. Let λj , j = 0, 1, · · · , be eigenvalues of the eigenvalue problem −y (x) + q(x)y(x) = λy(x), y (0) = y (π) = 0. Then there is the following identity of trace: ∞ n=0 [λn − n2 − 1 π π q(x)dx] = 0 1 1 [q(π) + q(0)] − 4 2π π q(x)dx. 0 The trace identity of a diﬀerential operator deeply reveals spectral structure of the diﬀerential operator and has important applications in the numerical calculation of eigenvalues, inverse problem, theory of solitons, theory of integrable system [22, 41]. However, the calculation of every eigenvalue for the diﬀerential operator is very diﬃcult. The most important application of the trace formulae is in solving inverse problems .

TÀI LIỆU LIÊN QUAN
10    22    1
16    48    0
7    17    1
4    42    1
8    8    1
TÀI LIỆU XEM NHIỀU
8    459838    35
14    8798    13
13    8330    458
3    7903    101
14    7597    381
8    6562    2073
16    6215    374
7    4503    1
2    3912    45
9    3881    10
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
12    60    0    29-06-2022
6    75    0    29-06-2022
40    77    0    29-06-2022
2    57    0    29-06-2022
40    52    0    29-06-2022
19    61    0    29-06-2022
7    63    0    29-06-2022
9    109    0    29-06-2022
10    54    0    29-06-2022
6    70    0    29-06-2022
TÀI LIỆU HOT
8    6562    2073
112    2388    1075
249    3505    611
561    1531    524
122    2474    478
13    8330    458
35    2462    390
14    7597    381
16    6215    374
20    2883    313
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này. 