# tailieunhanh - Trace formulae for Schr¨odinger systems on graphs

## For Schr¨odinger systems on metric graphs with δ-type conditions at the central vertex, firstly, we obtain precise description for the square root of the large eigenvalue up to the o(1/n)-term. Secondly, the regularized trace formulae for Schr¨odinger systems are calculated with some techniques in classical analysis. Finally, these formulae are used to obtain a result of inverse problem in the spirit of Ambarzumyan. | Turk J Math 34 (2010) , 181 – 196. ¨ ITAK ˙ c TUB doi: Trace formulae for Schr¨ odinger systems on graphs Chuan-Fu Yang, Zhen-You Huang and Xiao-Ping Yang Abstract For Schr¨ odinger systems on metric graphs with δ -type conditions at the central vertex, ﬁrstly, we obtain precise description for the square root of the large eigenvalue up to the o(1/n) -term. Secondly, the regularized trace formulae for Schr¨ odinger systems are calculated with some techniques in classical analysis. Finally, these formulae are used to obtain a result of inverse problem in the spirit of Ambarzumyan. Key Words: Schr¨ odinger systems, metric graph, δ -type conditions, trace formula, Ambarzumyan-type theorem 1. Introduction In a ﬁnite-dimensional space, an operator has a ﬁnite trace. But in an inﬁnite-dimensional space, ordinary diﬀerential operators do not necessarily have ﬁnite trace (the sum of all eigenvalues). But Gelfand and Levitan  observed that the sum n (λn − μn ) often makes sense, where {λn } and {μn } are the eigenvalues of the “perturbed problem” and “unperturbed problem”, respectively. The sum n (λn − μn ) is called a regularized trace. Gelfand and Levitan ﬁrst obtained an identity of trace for the Schr¨ odinger operator . We describe brieﬂy here the result. Let λj , j = 0, 1, · · · , be eigenvalues of the eigenvalue problem −y (x) + q(x)y(x) = λy(x), y (0) = y (π) = 0. Then there is the following identity of trace: ∞ n=0 [λn − n2 − 1 π π q(x)dx] = 0 1 1 [q(π) + q(0)] − 4 2π π q(x)dx. 0 The trace identity of a diﬀerential operator deeply reveals spectral structure of the diﬀerential operator and has important applications in the numerical calculation of eigenvalues, inverse problem, theory of solitons, theory of integrable system [22, 41]. However, the calculation of every eigenvalue for the diﬀerential operator is very diﬃcult. The most important application of the trace formulae is in solving inverse problems .

TÀI LIỆU LIÊN QUAN
10    8    1
16    25    0
7    6    1
4    17    1
8    4    1
TÀI LIỆU XEM NHIỀU
8    19610    4
3    6535    89
14    5233    255
8    4813    1611
2    3122    26
24    3031    56
9    2913    5
35    2827    139
29    2677    78
8    2539    23
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
94    24    0    24-06-2021
167    29    0    24-06-2021
76    39    4    24-06-2021
106    32    0    24-06-2021
97    26    0    24-06-2021
18    25    0    24-06-2021
20    26    0    24-06-2021
1    15    1    24-06-2021
2    29    0    24-06-2021
20    26    0    24-06-2021
TÀI LIỆU HOT
8    4813    1611
112    1130    462
122    1080    309
14    5233    255
20    1923    238
36    1584    216
35    1277    211
21    2282    183
16    2262    181
171    1165    179