# tailieunhanh - New inequalities similar to Hardy-Hilbert’s inequality

## In this paper, we establish a new inequality similar to Hardy-Hilbert’s inequality. As applications, some particular results and the equivalent form are derived. The integral analogues of the main results are also given. | Turk J Math 34 (2010) , 153 – 165. ¨ ITAK ˙ c TUB doi: New inequalities similar to Hardy-Hilbert’s inequality Namita Das and Srinibas Sahoo Abstract In this paper, we establish a new inequality similar to Hardy-Hilbert’s inequality. As applications, some particular results and the equivalent form are derived. The integral analogues of the main results are also given. Key Words: Hardy-Hilbert’s inequality; H¨ older’s inequality; β -function. 1. Introduction If p > 1, 1p + 1 q = 1, an , bn ≥ 0 satisfy 0 1, 1p + 1q = 1, f, g ≥ 0 satisfy 0 1, an ≥ 0 and An = a1 + a2 + . + an , then p ∞ An n n=1 1, f ≥ 0 and F (x) = ∞ x 0 F (x) x 0 f(t)dt, then p dx 0 for k = 1, 2, 3, 4, and lim f (k) (x) = x→∞ 0, for k = 0, 1, 2, 3, 4, then the following inequality holds: 1 − f(1) 2 , then ∞ mα−1 m=1 (m + n)λ 2 , β > 0 such that α + β 1 >− Again, by (), ∞ 1 ρ1 (x)fn (x)dx ∞ − n−λ . g1 (1) = − λ 12 12 (n + 1) 12 1 1 λ−α+1 λ − α + 1 −λ B(α, λ − α) ∞ nα+β−λ−1 − n=1 1 λ + α 12 ∞ nβ−λ−1 , n=1 ∞ nβ−λ−1 . n=1 2 Thus () is valid. This proves the lemma. 3. Main results In this section we prove our main result and derive some particular cases. Theorem Let p > 1, p1 + 1q = 1, 0 2, r + s = n n ∞ ∞ λ, an , bn ≥ 0, An = k=1 ak , Bn = k=1 bk . If 0 0 , take a ˜ n = n− ∞ 1+ε p 1+ε , ˜bn = n− q for n ≥ 1 . Then p1 ˜pn a n=1 ∞ 1q ˜bq n n=1 1 1, A˜m = m k=1 a ˜k > m−1 k+1 k=1 k x− 1+ε p dx = 1 m x− 1+ε p dx = 1 ε q mq −p − 1 . 1 − ε(q − .

TÀI LIỆU LIÊN QUAN
TÀI LIỆU XEM NHIỀU
8    459838    35
14    8798    13
13    8330    458
3    7903    101
14    7597    381
8    6562    2073
16    6215    374
7    4503    1
2    3912    45
9    3881    10
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
55    23    2    29-06-2022
4    61    0    29-06-2022
5    65    0    29-06-2022
15    64    0    29-06-2022
83    23    1    29-06-2022
53    29    1    29-06-2022
127    69    0    29-06-2022
6    69    0    29-06-2022
7    100    0    29-06-2022
8    74    0    29-06-2022
TÀI LIỆU HOT
8    6562    2073
112    2388    1075
249    3505    611
561    1531    524
122    2474    478
13    8330    458
35    2462    390
14    7597    381
16    6215    374
20    2883    313
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.