# tailieunhanh - Korovkin type approximation theorem for functions of two variables in statistical sense

## In this paper, using the concept of A-statistical convergence for double sequences, we investigate a Korovkin-type approximation theorem for sequences of positive linear operator on the space of all continuous real valued functions defined on any compact subset of the real two-dimensional space. | Turk J Math 34 (2010) , 73 – 83. ¨ ITAK ˙ c TUB doi: Korovkin type approximation theorem for functions of two variables in statistical sense Fadime Dirik and Kamil Demirci Abstract In this paper, using the concept of A -statistical convergence for double sequences, we investigate a Korovkin-type approximation theorem for sequences of positive linear operator on the space of all continuous real valued functions deﬁned on any compact subset of the real two-dimensional space. Then we display an application which shows that our new result is stronger than its classical version. We also obtain a Voronovskaya-type theorem and some diﬀerential properties for sequences of positive linear operators constructed by means of the Bernstein polynomials of two variables. Key Words: A -Statistical convergence of double sequence, Korovkin-type approximation theorem, Bernstein polynomials, Voronovskaya-type theorem. 1. Introduction Let {Ln } be a sequence of positive linear operators acting from C(X) into C(X), which is the space of all continuous real valued functions on a compact subset X of all the real numbers. In this case, Korovkin  ﬁrst noticed necessary and suﬃcient conditions for the uniform convergence of Ln (f) to a function f by using the test functions ei deﬁned by ei (x) = xi (i = 0, 1, 2). Later many researchers investigate these conditions for various operators deﬁned on diﬀerent spaces. Furthermore, in recent years, with the help of the concept of statistical convergence, various statistical approximation results have been proved (, , , , , ). Recall that every convergent sequence (in the usual sense) is statistically convergent but its converse is not always true. Also, statistical convergent sequences do need to be bounded. So, the usage of this method of convergence in the approximation theory provides us many advantages. Our primary interest in the present paper is to obtain a Korovkin-type approximation theorem for

TÀI LIỆU LIÊN QUAN
TÀI LIỆU XEM NHIỀU
8    19610    4
3    6535    89
14    5233    255
8    4813    1611
2    3122    26
24    3031    56
9    2913    5
35    2827    139
29    2677    78
8    2539    23
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
3    27    0    24-06-2021
44    40    0    24-06-2021
46    42    0    24-06-2021
5    6    1    24-06-2021
5    26    0    24-06-2021
7    2    1    24-06-2021
5    30    0    24-06-2021
6    30    0    24-06-2021
141    37    1    24-06-2021
5    29    0    24-06-2021
TÀI LIỆU HOT
8    4813    1611
112    1130    462
122    1080    309
14    5233    255
20    1923    238
36    1584    216
35    1277    211
21    2282    183
16    2262    181
171    1165    179