# tailieunhanh - Uniqueness of derivatives of meromorphic functions sharing two or three sets

## In the paper we consider the problem of uniqueness of derivatives of meromorphic functions when they share two or three sets and obtained five results which will improve all the existing results. | Turk J Math 34 (2010) , 21 – 34. ¨ ITAK ˙ c TUB doi: Uniqueness of derivatives of meromorphic functions sharing two or three sets Abhijit Banerjee and Pranab Bhattacharjee Abstract In the paper we consider the problem of uniqueness of derivatives of meromorphic functions when they share two or three sets and obtained ﬁve results which will improve all the existing results. Key word and phrases: Meromorphic functions, uniqueness, weighted sharing, derivative, shared set. 1. Introduction, deﬁnitions and results In this paper by meromorphic functions we will always mean meromorphic functions in the complex plane. It will be convenient to let E denote any set of positive real numbers of ﬁnite linear measure, not necessarily the same at each occurrence. For any non-constant meromorphic function h(z) we denote by S(r, h) any quantity satisfying S(r, h) = o(T (r, h)) (r −→ ∞, r ∈ E). Let f and g be two non-constant meromorphic functions and let a be a ﬁnite complex number. We say that f and g share a CM, provided that f − a and g − a have the same zeros with the same multiplicities. Similarly, we say that f and g share a IM, provided that f − a and g − a have the same zeros ignoring multiplicities. In addition, we say that f and g share ∞ CM, if 1/f and 1/g share 0 CM, and we say that f and g share ∞ IM, if 1/f and 1/g share 0 IM. We denote by T (r) the maximum of T r, f (k) and T r, g(k) . The notation S(r) denotes any quantity satisfying S(r) = o(T (r)) (r −→ ∞, r ∈ E). Let S be a set of distinct elements of C∪ {∞} and Ef (S) = a∈S {z : f(z)−a = 0} , where each zero is counted according to its multiplicity. If we do not count the multiplicity the set Ef (S) = a∈S {z : f(z) − a = 0} is denoted by E f (S). If Ef (S) = Eg (S) we say that f and g share the set S CM. On the other hand, if E f (S) = E g (S), we say that f and g share the set S IM. F. Gross ﬁrst considered the uniqueness of meromorphic functions that share sets of

TÀI LIỆU LIÊN QUAN
4    70    0
9    44    1
8    55    0
7    45    0
25    57    0
8    67    0
7    47    0
6    78    0
14    42    1
11    39    1
TÀI LIỆU XEM NHIỀU
8    459838    35
14    8798    13
13    8330    458
3    7903    101
14    7597    381
8    6562    2073
16    6215    374
7    4503    1
2    3912    45
9    3881    10
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
7    40    1    29-06-2022
6    59    0    29-06-2022
4    89    0    29-06-2022
15    30    4    29-06-2022
106    56    2    29-06-2022
92    24    1    29-06-2022
4    71    0    29-06-2022
5    54    1    29-06-2022
5    30    4    29-06-2022
115    80    0    29-06-2022
TÀI LIỆU HOT
8    6562    2073
112    2388    1075
249    3505    611
561    1531    524
122    2474    478
13    8330    458
35    2462    390
14    7597    381
16    6215    374
20    2883    313
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.