# tailieunhanh - On orders and types of Dirichlet series of slow growth

## The present paper has the object of showing some interesting relationship on the maximum modulus, the maximum term, the index of maximum term and the coefficients of entire functions defined by Dirichlet series of slow growth some properties like Taylor entire functions are obtained. | Turk J Math 34 (2010) , 1 – 11. ¨ ITAK ˙ c TUB doi: On orders and types of Dirichlet series of slow growth Yinying Kong and Huilin Gan Abstract The present paper has the object of showing some interesting relationship on the maximum modulus, the maximum term, the index of maximum term and the coeﬃcients of entire functions deﬁned by Dirichlet series of slow growth; some properties like Taylor entire functions are obtained. Key Words: Dirichlet series, generalized order, generalized type. 1. Introduction and main results The growth and the value distribution of Taylor entire functions f(z) = +∞ bn z n n=0 were studied for a long time and many important results were obtained in [1],[2] and [3]. For instance, . Bajpai gave some diﬀerent characterizations on the coeﬃcients and the maximum modulus, the maximum term, and the index of maximum term for the entire functions of fast growth ρ = ∞ in [1] . On the other hand, . Kapoor [3] and Ramesh Ganti [2] continued this work and deﬁned a generalized order and a generalized type for the Taylor entire functions of slow growth ρ = 0 . Dirichlet series was introduced by L. Dirichlet in 19th century and it has the form: f(s) = +∞ bn eλn s , (1) n=1 where {bn } ∈ C, 0 0 , that is, h(x) is slowly increasing. Deﬁnition 2 Let α(x) ∈ Λ , the generalized order of the entire function f(s) deﬁned by (1) can be deﬁned as α(ln M (σ)) , σ→+∞ α(σ) ρ = ρ(α; f) = lim 2 KONG, GAN if the order is of slow growth . ρ ∈ (0, ∞), and then the type τ (α; f) of (1) is deﬁned by τ = τ (α; f) = lim σ→+∞ α(M (σ)) β(ln M (σ)) = lim , σ ρ σ→+∞ [α(e )] [β(σ)]ρ where β(ln x) = α(x). Theorem 1 Suppose that Dirichlet series (1) satisﬁes (2) and (3), then 1o 2o lim lim σ→+∞ α(ln M (σ)) α(λn ) − 1 = lim , 1 σ→+∞ α(σ) α(ln |bn |− λn ) α(λn ) σ→+∞ α(ln |b n| − λ1n ) ≤ lim σ→+∞ for p = 1, α(ln M (σ)) α(λn ) + 1, ≤ lim 1 σ→+∞ α(σ) α(ln |bn |− λn ) for p = 2, 3, · · · Theorem 2 Suppose that .

TÀI LIỆU LIÊN QUAN
11    66    0
10    37    0
25    39    0
172    56    0
10    57    1
TÀI LIỆU XEM NHIỀU
8    459823    35
14    8773    13
13    8326    457
3    7901    101
14    7594    381
8    6558    2073
16    6201    374
7    4501    1
2    3911    45
9    3877    10
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
205    71    0    28-06-2022
12    15    1    28-06-2022
10    22    1    28-06-2022
7    4    1    28-06-2022
9    39    1    28-06-2022
30    40    4    28-06-2022
3    92    2    28-06-2022
6    76    0    28-06-2022
53    27    1    28-06-2022
24    62    3    28-06-2022
TÀI LIỆU HOT
8    6558    2073
112    2386    1075
249    3456    606
561    1529    523
122    2472    478
13    8326    457
35    2459    390
14    7594    381
16    6201    374
20    2880    313
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.