tailieunhanh - Hướng dẫn giải bài 35,36,37 trang 51 SGK Đại số 8 tập 2

Tóm tắt lý thuyết phương trình chứa dấu giá trị tuyệt đối và hướng dẫn giải các bài tập trang 51 SGK sẽ giúp các em dễ dàng hơn trong việc tìm kiếm tài liệu giải quyết các bài tập đi kèm. Mời các em cùng tham khảo. | Bài 35 trang 51 SGK Đại số 8 tập 2 Bỏ dấu giá trị tuyệt đối và rút gọn các biểu thức: a) A = 3x + 2 + |5x| trong hai trường hợp: x ≥ 0 và x < 0; b) B = |4x| -2x + 12 trong hai trường hợp: x ≤ 0 và x > 0; c) C = |x – 4| – 2x + 12 khi x > 5; d) D = 3x + 2 + |x + 5| Hướng dẫn giải bài 35 trang 51 SGK Đại số 8 tập 2 a) A = 3x + 2 + |5x| => A = 3x + 2 + 5x khi x ≥ 0 A = 3x + 2 – 5x khi x < 0 Vậy A = 8x + 2 khi x ≥ 0 A = -2x + 2 khi x < 0 b) B = 4x – 2x + 12 khi x ≥ 0 B = -4x -2x + 12 khi x < 0 Vậy B = 2x + 12 khi x ≥ 0 B = -6x + 12 khi x < 0 c) Với x > 5 => x – 4 > 1 hay x – 4 dương nên C = x – 4 – 2x + 12 = -x + 8 Vậy với x > 5 thì C = -x + 8 d) D= 3x + 2 + x+ 5 khi x + 5 ≥ 0 D = 3x + 2 – (x + 5) khi x + 5 < 0 Vậy D = 4x + 7 khi x ≥ -5 D = 2x – 3 khi x < -5 Bài 36 trang 51 SGK Đại số 8 tập 2 Giải các phương trình: a) |2x| = x – 6; b) |-3x| = x – 8; c) |4x| = 2x + 12; d) |-5x| – 16 = 3x. Hướng dẫn giải bài 36 trang 51 SGK Đại số 8 tập 2 a) |2x| = x – 6 |2x| = x – 6 ⇔ 2x = x – 6 khi x ≥ 0 ⇔ x = -6 không thoả mãn x ≥ 0 |2x| = x – 6 ⇔ -2x = x – 6 khi x < 0 ⇔ 3x = 6 ⇔ x = 2 không thoả mãn x < 0 Vậy phương trình vô nghiệm b) |-3x| = x – 8 |-3x| = x – 8 ⇔ -3x = x – 8 khi -3x ≥ 0 ⇔ x ≤ 0 ⇔ 4x = 8 ⇔ x = 2 (không thoả mãn ≤ 0) |-3x| = x – 8 ⇔ 3x = x – 8 khi -3x < 0 ⇔ x > 0 ⇔ 2x = -8 ⇔ x = -4 (không thoả mãn x < 0) Vậy phương trình vô nghiệm c) |4x| = 2x + 12 |4x| = 2x + 12 ⇔ 4x = 2x + 12 khi 4x ≥ 0 ⇔ x ≥ 0 ⇔ 2x = 12 ⇔ x = 6 (thoả mãn điều kiện x ≥ 0) |4x| = 2x + 12 ⇔ -4x = 2x + 12 khi 4x < 0 ⇔ x < 0 ⇔ 6x = -12 ⇔ x = -2 (thoả mãn điều kiện x < 0) Vậy phương trình có hai nghiệm x = 6 và x = -2 d) |-5x| – 16 = 3x |-5x| – 16 = 3x ⇔ -5x – 16 = 3x khi -5x ≥ 0 ⇔ x ≤ 0 ⇔ 8x = -16 ⇔ x = -2 (thoả mãn điều kiện x ≤ 0) |-5x| – 16 = 3x ⇔ 5x -16 = 3x khi -5x < 0 ⇔ x > 0 ⇔ 2x = 16 ⇔ x = 8 (thoả mãn điều kiện x > 0) Vậy phương trình có hai nghiệm x = -2, x= .

TỪ KHÓA LIÊN QUAN