tailieunhanh - Đề thi toán quốc gia bảng B năm 2000
Tài liệu tham khảo về đề thi môn toán quốc gia năm học 1999-2000 môn Toán Bảng B. | ĐỀ THI QUỐC GIA NĂM HỌC 1999-2000 MÔN : TOÁN (Bảng B) Ngày thi thứ nhất Bài 1 : Cho số thực c >2 . Dãy số (x ) , n=0,1,2, , được xây dựng theo cách sau : x = , x = (n=0,1,2, ) nếu các biểu thức dưới căn là không âm. Chứng minh rằng dãy (x ) được xác định với mọi giá trị n và tồn tại giới hạn hữu hạn limx khi n Bài 2 : Trên mặt phẳng cho trước hai đường tròn (O ,r ) và (O ,r ). Trên đường tròn (O ,r ) lấy một điểm M và trên đường tròn (O ,r ) lấy một điểm M sao cho đường thẳng O M cắt đường thẳng O M tại một điểm Q. Cho M chuyển động trên đường tròn (O ,r ) , M chuyển động trên đường tròn (O ,r ) cùng theo chiều kim đồng hồ và với vận tốc góc như nhau . 1/ Tìm quĩ tích trung điểm đoạn thẳng M M . 2/ Chứng minh rằng đường tròn ngoại tiếp tam giác M QM luôn đi qua một điểm cố định . Bài 3 : Cho đa thức : P(x) = x - 9x + 24x – 27 Chứng minh rằng với mỗi số nguyên dương n luôn tồn tại một số nguyên dương a sao cho P(a ) chia hết cho 3 . ----------------------------- ĐỀ THI QUỐC GIA NĂM HỌC 1999-2000 MÔN : TOÁN (Bảng B) Ngày thi thứ hai Bài 4 : Cho trước góc α với 02 đa thức : P (x) = x sinα – xsin(nα) + sin(n-1)α chia hết cho f(x) Bài 5 : Cho tứ diện ABCD có bán kính đường tròn ngoại tiếp các mặt đều bằng nhau . Chứng minh rằng các cạnh đốì diện của tứ diện ABCD bằng nhau. Bài 6 : Tìm tất cả các hàm số f(x) thoả mãn điều kiện : x .f(x) + f(1-x) = 2x - x với mọi số thực x. -----------------------------
đang nạp các trang xem trước