tailieunhanh - Improving Performance of the Asynchronous Cooperative Relay Network with Maximum Ratio Combining and Transmit Antenna Selection Technique

In this paper, a new amplify and forward (AF) asynchronous cooperative relay network using maximum ratio combining (MRC) and transmit antenna selection (TAS) technique is considered. In order to obtain a maximal received diversity gain, the received signal vectors from all antennas of the each relay node are jointly combined by MRC technique in the first phase. Then, one antenna of each relay node is selected for forwarding MRC signal vectors to the destination node in the second phase. | VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 1 (2017) 28-36 Improving Performance of the Asynchronous Cooperative Relay Network with Maximum Ratio Combining and Transmit Antenna Selection Technique The Nghiep Tran∗, Van Bien Pham, Huu Minh Nguyen Faculty of Radio-Electronics, Le Quy Don Technical University, 236 Hoang Quoc Viet Street, Cau Giay, Hanoi, Vietnam Abstract In this paper, a new amplify and forward (AF) asynchronous cooperative relay network using maximum ratio combining (MRC) and transmit antenna selection (TAS) technique is considered. In order to obtain a maximal received diversity gain, the received signal vectors from all antennas of the each relay node are jointly combined by MRC technique in the first phase. Then, one antenna of each relay node is selected for forwarding MRC signal vectors to the destination node in the second phase. The proposed scheme not only offers to reduce the interference components induced by inter-symbol interference (ISI) among the relay nodes, but also can effectively remove them with employment near-optimum detection (NOD) at the destination node as compared to the previous distributed close loop extended-orthogonal space time block code (DCL EO-STBC) scheme. The analysis and simulation results confirm that the new scheme outperforms the previous cooperative relay networks in both synchronous and asynchronous conditions. Moreover, the proposed scheme allows to reduce the requirement of the Radio-Frequency (RF) chains at the relay nodes and is extended to general multi-antenna relay network without decreasing transmission rate. Received 17 October 2016; Revised 22 March 2017; Accepted 24 April 2017 Keywords: Maximum ratio combining, transmit antenna selection, near-optimum detection, distributed space-time coding, distributed close-loop extended orthogonal space time block code. 1. Introduction* node, and (2) decode and forward (DF) [7-12], that decodes the received signal from the source, .

TỪ KHÓA LIÊN QUAN