tailieunhanh - Design of LMS Based Adaptive Beamformer for ULA Antennas

This paper proposes a design of an adaptive beamformer for arbitrarily Uniformly spaced Linear Array (ULA) antennas. Least Mean Square (LMS), a prevalent adaptive beamforming algorithm, has been employed in the beamformer for the ULA antennas. A procedure has been introduced to validate the proposed design. Applying the proposal, a LMS based adaptive beamformer for 8×1 ULA antennas has been built and implemented on Xilinx FPGA. | VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2016) 71-78 Design of LMS Based Adaptive Beamformer for ULA Antennas Tong Van Luyen1, Truong Vu Bang Giang2,* 1 Hanoi University of Industry, Hanoi, Vietnam VNU University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam 2 Abstract This paper proposes a design of an adaptive beamformer for arbitrarily Uniformly spaced Linear Array (ULA) antennas. Least Mean Square (LMS), a prevalent adaptive beamforming algorithm, has been employed in the beamformer for the ULA antennas. A procedure has been introduced to validate the proposed design. Applying the proposal, a LMS based adaptive beamformer for 8×1 ULA antennas has been built and implemented on Xilinx FPGA. The fundamental characteristics of the implemented beamformer have been measured and verified. The experimental results show that the beamformer is capable of creating appropriate weights in order to steer the main lobe of the ULA antennas to the desired direction and to place simultaneously null points towards the interferences in case of NOAA LEO satellites system. Received 01 October 2016, Revised 16 November 2016, Accepted 19 November 2016 Keywords: Beamformer design, Adaptive beamformer, Beamformer implementation, ULA antennas . 1. Introduction* hardware, but the disadvantage of this LMS algorithm is slow convergence [2-4]. Recently, design of the beamformer has been extensively studied for a number of applications with several results related to this field from the literature. Design and FPGA implementation of LMS adaptive algorithm for the beamformer have been done by using Xilinx System Generator in [5], however, complete structrure and verification of the beamformer have not been given. In [6], FPGA implementation of a beamformer based on LMS has been built for radar applications. This paper has not presented the design and verification procedure of the implemented beamformer. The work in [7] implemented a .

TỪ KHÓA LIÊN QUAN